Question

At steady state, air at 200 kPa, 325 K, and mass flow rate of 1.0 kg/s...

At steady state, air at 200 kPa, 325 K, and mass flow rate of 1.0 kg/s enters an insulated duct having differing inlet and exit cross-sectional areas. The inlet cross-sectional area is 6 cm2. At the duct exit, the pressure of the air is 100 kPa and the velocity is 300 m/s. Neglecting potential energy effects and modeling air as an ideal gas, determine a. the velocity of the air at the inlet, in m/s. b. the temperature of the air at the exit, in K. c. the exit cross-sectional area, in cm2.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Thus

(a) velocity of air at inlet is 777.3 m/s

(b) temperature of air at exit is 580.8 K

(c) exit cross-section area is 55.56 cm2

Add a comment
Know the answer?
Add Answer to:
At steady state, air at 200 kPa, 325 K, and mass flow rate of 1.0 kg/s...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Air enters a turbine in steady flow at 600 kPa, 740 K, and 120 m/s. The...

    Air enters a turbine in steady flow at 600 kPa, 740 K, and 120 m/s. The exit conditions are 100 kPa, 450 K, and 220 m/s. A heat loss of 15 kJ/kg occurs, and the inlet area is 4.91 cm2 . Determine (a) the kinetic-energy change, in kJ/kg, (b) the power output, in kW, and (c) the ratio of the inlet- to outletpipe diameters

  • Need help with Thermodynamics Homework. WILL RATE HIGH! Thank you! Please answer them all for high...

    Need help with Thermodynamics Homework. WILL RATE HIGH! Thank you! Please answer them all for high rate 1. Carbon Oxide (CO) initially occupying 2.9 m3 at 7.4 bar, 246.85°C undergoes an internally reversible expansion during which pV1.4 = constant to a final state where the temperature is 36.85°C. Assuming the ideal gas model, determine the entropy change, in Joules/K. 2. Water at 10 bar, 240°C enters a turbine operating at steady state and exits at 4 bar. Stray heat transfer...

  • Problem 4.018 SI Air enters a horizontal, constant-diameter heating duct operating at steady state at 300...

    Problem 4.018 SI Air enters a horizontal, constant-diameter heating duct operating at steady state at 300 K, 1 bar, with a volumetric flow rate of 0.25 m3/s, and exits at 325 K, 0.95 bar. The flow area is 0.05 m2 Assuming the ideal gas model with k-1.4 for the air, determine: (a) the mass flow rate, in kg/s, (b) the velocity at the inlet and exit, each in m/s, and (c) the rate of heat transfer to the air, in...

  • Air, modeled as an ideal gas, enters a turbine operating at steady state at 450 kPa,...

    Air, modeled as an ideal gas, enters a turbine operating at steady state at 450 kPa, 800 K and exits at 100 kPa. The temperature of the exiting air is 420 K. a) If the turbine is well insulated and you can ignore kinetic and potential energy effects, determine if the exit temperature can be correct. b) What if the exit temperature is 550 K? Explain you’re your reasoning. Hint: Find the entropy generation rate first.

  • A) Steam enters a horizontal pipe operating at steady state with a specific enthalpy of 2,663 kJ/...

    A) Steam enters a horizontal pipe operating at steady state with a specific enthalpy of 2,663 kJ/kg and a mass flow rate of 0.1 kg/s. At the exit, the specific enthalpy is 1,531 kJ/kg. If there is no significant change in kinetic energy from inlet to exit, determine the rate of heat transfer between the pipe and its surroundings, in kW. B) Refrigerant 134a enters a horizontal pipe operating at steady state at 40°C, 3.1 bar and a velocity of...

  • Problem 4.018 SI Air enters a horizontal, constant-diameter heating duct operating at steady state at 290...

    Problem 4.018 SI Air enters a horizontal, constant-diameter heating duct operating at steady state at 290 K, 1 bar, with a volumetric flow rate of 0.25 m3/s, and exits at 325 K, 0.95 bar. The flow area is 0.06 m2 Assuming the ideal gas model with k 1.4 for the air, determine: (a) the mass flow rate, in kg/s, (b) the velocity at the inlet and exit, each in m/s, and (c) the rate of heat transfer to the air,...

  • Air expands through a turbine from 8 bar, 960 K to 1 bar, 450 K. The...

    Air expands through a turbine from 8 bar, 960 K to 1 bar, 450 K. The inlet velocity is small compared to the exit velocity of 90 m/s. The turbine operates at steady state and develops a power output of 2500 kW. Heat transfer between the turbine and its surroundings and potential energy effects are negligible. Modeling air as an ideal gas, calculate the mass flow rate of air, in kg/s, and the exit area, in m2.

  • An air compressor is operating at a steady state with a mass flow rate of 1.3...

    An air compressor is operating at a steady state with a mass flow rate of 1.3 kg/s. The inlet pressure and temperature are P1 171 kPa and T1 319 K, respectively. The exit pressure and temperature are P2 609 kPa and T2 428 K. respectively. Heat lost from the compressor to the surroundings per unit mass flow is 16 kJ/kg. Air can be assumed as an ideal gas. Kinetic and potential energy changes can be neglected. what is the required...

  • 2.Air enters an adiabatic nozzle in steady flow at 300 kPa, 200 C and 45 m/sec,...

    2.Air enters an adiabatic nozzle in steady flow at 300 kPa, 200 C and 45 m/sec, and leaves at 100 kPa and 180 m/sec. The inlet area of the nozzle is 110 cm 2. Determine: (a) the mass flow rate through the nozzle, and mdot = _ kg/sec (b) the exit temperature T2 = OC

  • Air enters a diffuser at 102 KPa , 57 Celcius , and 285 m/s and exits...

    Air enters a diffuser at 102 KPa , 57 Celcius , and 285 m/s and exits at 303 kPa , 10 Celcius , and 12 m/s. The area of the inlet of the diffuser is 97 cm2. Find the mass flow rate of air (kg/s), find the area of the exit of the diffuser (cm2), find the average heat transfer time rate (kW)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT