Question

Problem 4.018 SI Air enters a horizontal, constant-diameter heating duct operating at steady state at 290 K, 1 bar, with a volumetric flow rate of 0.25 m3/s, and exits at 325 K, 0.95 bar. The flow area is 0.06 m2 Assuming the ideal gas model with k 1.4 for the air, determine: (a) the mass flow rate, in kg/s, (b) the velocity at the inlet and exit, each in m/s, and (c) the rate of heat transfer to the air, in kw. Part A Determine the mass flow rate, in kg/s. kg/s the tolerance is +/-2% Click if you would like to Show Work for this question: Attempts: 0 of 15 used SAVE FOR LATER SUBMIT ANSWER

0 0
Add a comment Improve this question Transcribed image text
Answer #1

32S k 29ok 1287メ290 lo5 0 25 0. 8323 ct 22 2 2 0325

Add a comment
Know the answer?
Add Answer to:
Problem 4.018 SI Air enters a horizontal, constant-diameter heating duct operating at steady state at 290...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 4.018 SI Air enters a horizontal, constant-diameter heating duct operating at steady state at 300...

    Problem 4.018 SI Air enters a horizontal, constant-diameter heating duct operating at steady state at 300 K, 1 bar, with a volumetric flow rate of 0.25 m3/s, and exits at 325 K, 0.95 bar. The flow area is 0.05 m2 Assuming the ideal gas model with k-1.4 for the air, determine: (a) the mass flow rate, in kg/s, (b) the velocity at the inlet and exit, each in m/s, and (c) the rate of heat transfer to the air, in...

  • Problem 4.041 SI Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor...

    Problem 4.041 SI Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -26°C with a volumetric flow rate of 0.18 m3/s. Refrigerant exits at 9 bar, 70°C. Changes in kinetic and potential energy from inlet to exit can be ignored. Determine the volumetric flow rate at the exit, in m3/s, and the compressor power, in kW.

  • Problem 12.043 SI Air enters a compressor operating at steady state at 50°C, 0.9 bar, 70%...

    Problem 12.043 SI Air enters a compressor operating at steady state at 50°C, 0.9 bar, 70% relative humidity with a volumetric flow rate of 0.8 m3/s. The molst alr exits the compressor at 155°C, 1.5 bar Assuming the compressor is well insulated, determine: (a) the relative humidity at the exit, in percent (b) the magnitude of the power input, in kVW (c) the rate of entropy production, in kW/K

  • Air enters a compressor at 152 kPa and 290 K and exits at a temperature of...

    Air enters a compressor at 152 kPa and 290 K and exits at a temperature of 507.4 K. Determine the power (kW) for the compressor if the inlet volumetric flow rate is 0.139 m/s and the heat transfer through the shell of the compressor to the surroundings is 1.31 kW. Use the ideal gas tables (variable specific heats).

  • Air modeled as an ideal gas enters a turbine operating at steady state at 1040 K,...

    Air modeled as an ideal gas enters a turbine operating at steady state at 1040 K, 278 kPa and exits at 120 kPa. The mass flow rate is 5.5 kg/s, and the power developed is 1200 kW. Stray heat transfer and kinetic and potential energy effects are negligible. Assuming k = 1.4, determine: (a) the temperature of the air at the turbine exit, in K. (b) the percent isentropic turbine efficiency.

  • Problem 4.040 SI Refrigerant 134a enters an air conditioner compressor at 4 bar, 20°C, and is...

    Problem 4.040 SI Refrigerant 134a enters an air conditioner compressor at 4 bar, 20°C, and is compressed at steady state to 12 bar, 80°C. The volumetric flow rate of the refrigerant entering is 8.5 m3/min. The work input to the compressor is 127.5 kJ per kg of refrigerant flowing Neglecting kinetic and potential energy effects, determine the magnitude of the heat transfer rate from the compressor, in kw kW the tolerance is +/-596 Click if you would like to Show...

  • A) Steam enters a horizontal pipe operating at steady state with a specific enthalpy of 2,663 kJ/...

    A) Steam enters a horizontal pipe operating at steady state with a specific enthalpy of 2,663 kJ/kg and a mass flow rate of 0.1 kg/s. At the exit, the specific enthalpy is 1,531 kJ/kg. If there is no significant change in kinetic energy from inlet to exit, determine the rate of heat transfer between the pipe and its surroundings, in kW. B) Refrigerant 134a enters a horizontal pipe operating at steady state at 40°C, 3.1 bar and a velocity of...

  • Air enters a compressor operating at steady state at a pressure of 100 kPa, a temperature...

    Air enters a compressor operating at steady state at a pressure of 100 kPa, a temperature of 290 K, and with a mass flow rate of 0.72 kg/s. At the exit, the pressure is 700 kPa and the temperature is 450 K. Heat transfer from the compressor to its surroundings occurs at a rate of 3 kW. Kinetic and potential energy changes can be ignored. Determine the power input to the compressor, in kW. Assume that the air is an...

  • At steady state, air at 200 kPa, 325 K, and mass flow rate of 1.0 kg/s...

    At steady state, air at 200 kPa, 325 K, and mass flow rate of 1.0 kg/s enters an insulated duct having differing inlet and exit cross-sectional areas. The inlet cross-sectional area is 6 cm2. At the duct exit, the pressure of the air is 100 kPa and the velocity is 300 m/s. Neglecting potential energy effects and modeling air as an ideal gas, determine a. the velocity of the air at the inlet, in m/s. b. the temperature of the...

  • Problem 6.055 SI Water at P1 = 20 bar, T1 = 400°C enters a turbine operating...

    Problem 6.055 SI Water at P1 = 20 bar, T1 = 400°C enters a turbine operating at steady state and exits at P2 = 1.5 bar, T2 = 230°C. The water mass flow rate is 4000 kg/hour. Stray heat transfer and kinetic and potential energy effects are negligible. Determine the power produced by the turbine, in kW, and the rate of entropy production in the turbine, in kW/K. Step 1 Determine the power produced by the turbine, in kW. W,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT