Question

Please help with part (c)...calculating the probability of finding the particle in a classically forbidden region (tunneling) Problem 6 Consider a particle oscillating in one dimension in a state described by the u = 4 quantum harmonic oscil- lator wave function. a) Locate the nodes of this wave function b) Determine the classical turning point for molecular hydrogen in the v 4state. The vibrational frequency of H2 is 131.9 THz. e) What is the probability of finding (either smaller or greater than) the classical turning point?

1 0
Add a comment Improve this question Transcribed image text
Answer #1

Muw Miu0 Ln enn Ln

Add a comment
Know the answer?
Add Answer to:
Please help with part (c)...calculating the probability of finding the particle in a classically forbidden region...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2. Now consider a particle in the ground state of the harmonic oscillator. ok gives the...

    2. Now consider a particle in the ground state of the harmonic oscillator. ok gives the wave function for the ground state, but not the value of the constant A. Determine what it has to be if the ground state is normalized. (b) Suppose a classical particle has an energy equal to the ground state energy E. This particle will, of course, oscillate back and forth as though it were attached to a spring. What would its turning points be?...

  • 3. [Total: 24 pts] a) (8 pts) Calculate the probability of finding a particle in the...

    3. [Total: 24 pts] a) (8 pts) Calculate the probability of finding a particle in the classically forbidden regime for the ground state of the 1D harmonic oscillator. Simplify the integral expression for the probability as much as possible - the integral can only be solved numerically. b) (8 pts) For the 1D harmonic oscillator, the energy eigenstates are either even or odd. This is indeed a special case of a more general statement: If V(x) is an even function...

  • For a particle described as a harmonic oscillator, the total energy w given by E,- (n...

    For a particle described as a harmonic oscillator, the total energy w given by E,- (n + hy and the potential energy is piven by VG) kw The classical turning points, to are the values of x where the total energy is equal to the potential energy. The ground state wave function of a harc oscillator is . The cost is defined by a = k/?. If we define the variable y as y = x, which of the following...

  • h2 4. In a region of the x-axis, a particle has a wave function given by...

    h2 4. In a region of the x-axis, a particle has a wave function given by y(x) = Ae-*4722° and energy where L is some length. (a) Find the potential energy as a function of x, and sketch V (x) versus x. (b) What is the classical potential (or corresponding force function) that has this dependence? (c) Find the kinetic energy as a function of x. (d) Show that x = L is the classical turning point (i.e. the place...

  • A NON stationary state A particle of mass m is in an infinite square well potential of width L, a...

    A NON stationary state A particle of mass m is in an infinite square well potential of width L, as in McIntyre's section 5.4. Suppose we have an initial state vector lv(t -0) results from Mclntrye without re-deriving them, and you may use a computer for your math as long as you include your code in your solution A(3E1) 4iE2)). You may use E. (4 pts) Use a computer to plot this probability density at 4 times: t 0, t2...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT