Question

rod with a radius of 5 cm sits on two horizontal, parallel rails that are 15 cm in a region of space within which there is a uniform magnetic field 1. A 1-kg apart and 50 em long, of 0.5 T, directed downward. If a current of 50 A is passed through the rod, with what speed will it leave the rails?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

di ston (e Cd) = 50 cm force onhe curven caviins sod coi le plared

Add a comment
Know the answer?
Add Answer to:
rod with a radius of 5 cm sits on two horizontal, parallel rails that are 15...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. A rod of mass 0.720 kg and radius 6.00 cm rests on two parallel rails...

    1. A rod of mass 0.720 kg and radius 6.00 cm rests on two parallel rails (see Figure right) that are d- 12.0 cm apart and L 45.0 cm long. The rod carries a current ofI 46.0 A in the direction shown and rolls along the rails without slipping. A uniform magnetic field of magnitude 0.540 T is directed perpendicular to the rod and the rails. (a) If it starts from rest, what is the speed of the rod as...

  • 3. A rod of mass 0.720 kg and radius 6.00 cm rests on two parallel rails...

    3. A rod of mass 0.720 kg and radius 6.00 cm rests on two parallel rails that are d = 12.0cm apart and L = 45.0cm long. The rod carries a current of 1 = 48.0 A in the direction shown and rolls along the rails without slipping. A uniform magnetic field of magnitude 0.240 T is 2 Page directed perpendicular to the rod and the rails. If it starts from rest, what is the speed of the rod as...

  • 3. A rod of mass 0.720 kg and radius 6.00 cm rests on two parallel rails...

    3. A rod of mass 0.720 kg and radius 6.00 cm rests on two parallel rails that are d = 12.0cm apart and L = 45.0cm long. The rod carries a current of I = 48.0 A in the direction shown and rolls along the rails without slipping. A uniform magnetic field of magnitude 0.240 T is 2 Page directed perpendicular to the rod and the rails. If it starts from rest, what is the speed of the rod as...

  • a rod of mass .720 kg and radius 6.00 cm rests on two parallel rails that...

    a rod of mass .720 kg and radius 6.00 cm rests on two parallel rails that are d= 12 cm apart and L= 45 cm long. the rod carries a current of I=48.0 A in the direction shown and rolls along the rails without slipping a uniform magnetic field of magnitude .240 T is directed perpendicular to the rod and the rails a) What is the magnetic force, FB, acting on the rod? b) What is the work done on...

  • c37. Review. A rod of mass 0.720 kg and radius 6.00 cm rests on two parallel...

    c37. Review. A rod of mass 0.720 kg and radius 6.00 cm rests on two parallel rails (Fig. P29.37) that are d 四12.0 cm apart and L-45.0 cm long. The rod carries a L. current of 48.0 A in the direction shown. A magnetic field B of magnitude 0.240 T is directed perpendicular to the rod and the rails. The rod moves over the rails without friction. What is the acceleration of the rod? How fast is the rod moving...

  • A conducting bar slides without friction on two parallel horizontal rails that are 50 cm apart...

    A conducting bar slides without friction on two parallel horizontal rails that are 50 cm apart and connected by a wire at one end. The resistance of the bar and the rails is constant and equal to 0.10 0. A uniform magnetic field is perpendicular to the plane of the rails. A 0.080-N force parallel to the rails is required to keep the bar moving at a constant speed of 0.50 m/s. What is the magnitude of the magnetic field...

  • The conducting rod shown in the accompanying figure moves alongparallel metal rails that are 25-cm...

    The conducting rod shown in the accompanying figure moves along parallel metal rails that are 25-cm apart. The system is in a uniform magnetic field of strength 10 T, which is directed into the page. The resistances of the rod and the rails are negligible, but the section PQ has a resistance of 0.25Ω. The rod moves at a constant speed of 5 m/s. Find:a) The current that flows through the resistanceb) The power supplied by the resistancec) The force...

  • The conducting rod shown in the accompanying figure moves along parallel metal rails that are 25-cm apart.

    The conducting rod shown in the accompanying figure moves along parallel metal rails that are 25-cm apart. The system is in a uniform magnetic field of strength 0.75 T, which is directed into the page. The resistances of the rod and the rails are negligible, but the section PQ has a resistance of 0.25 Ω. (a) What is the emf induced in the rod when it is moving to the right with a speed of 5.0 m/s? (b) What force is required to...

  • 1. A rod (length = 10 cm) moves on two horizontal frictionless conducting rails, as shown...

    1. A rod (length = 10 cm) moves on two horizontal frictionless conducting rails, as shown below. The magnetic field in the region is directed perpendicularly to the plane of the rails and is uniform and constant. If a constant force of 0.60 N moves the bar at a constant velocity of 2.0 m/s, show that the current through the 12-2 load resistor is 0.32 A. 1222 An ideal step-down transformer has 200 primary turns and 50 secondary turns. If...

  • A conducting pustion bar slides without friction on two parallel horizontal rails that are 50cm apart...

    A conducting pustion bar slides without friction on two parallel horizontal rails that are 50cm apart and connected by a wire at one end. The resistance of the bar and the rails is constant and caual to 0.10 hat uniform magnetic field is perpendicular to the Plane of the rails of 0.080-N force parallel to the rails is reauired to keep the at a constant speed of c. 50 m/s. What is the magnitude of the magnetic field in Tesla?...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT