Question

2 capacitors , one 10 μF and the other 20 μF are connected in series to...

2 capacitors , one 10 μF and the other 20 μF are connected in
series to a battery of 12 volts. F ind a) the equivalent capacitance of 2, b) the equivalent charge
and on each capacitor, c) the voltage drop across each, and d) the energy stored in each.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

a) 10uF & 204F are in Series 10X20 = 10+ 20 V souc At 10uF At 2007 , Ceq = 20 MF Q = Ceq V - 30 uF X 12 Ploup = Souc ; Rope -

Add a comment
Know the answer?
Add Answer to:
2 capacitors , one 10 μF and the other 20 μF are connected in series to...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1) A parallel plate capacitor with an area of 300 cm2 is separated by a distance...

    1) A parallel plate capacitor with an area of 300 cm2 is separated by a distance of 2 mm in air or vacuum is charged by a battery of 12 volts. Find a) the capacitance of the system, b) the charge on the plates and c) the energy stored. 2) 2 capacitors , one 10 μF and the other 20 μF are connected in series to a battery of 12 volts. Find a) the equivalent capacitance of 2 b) the...

  • Two capacitors,C1 = 19.0 μF andC2 = 45.0 μF, are connected in series,and...

    Two capacitors,C1 = 19.0 μF andC2 = 45.0 μF, are connected in series, and a 21.0-V battery is connected across them.(a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor.equivalent capacitance    13.3 μFtotal energy stored    2.93e-3  J(b) Find the energy stored in each individual capacitor.(c) Show that the sum of these two energies is the same as the energy found in part (a). Will this equality always be true, or does it depend on the number of capacitors and their...

  • Two capacitors, C1 = 19.0 μF and C2 = 38.0 μF, are connected in series, and...

    Two capacitors, C1 = 19.0 μF and C2 = 38.0 μF, are connected in series, and a 21.0-V battery is connected across them. (a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor. equivalent capacitance     μF total energy stored     J (b) Find the energy stored in each individual capacitor. energy stored in C1     J energy stored in C2     J Show that the sum of these two energies is the same as the energy found in part (a)....

  • Two capacitors, C1 = 28.0 μF and C2 = 35.0 μF, are connected in series, and...

    Two capacitors, C1 = 28.0 μF and C2 = 35.0 μF, are connected in series, and a 9.0-V battery is connected across them. (a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor. equivalent capacitance ______ μF total energy stored _______ J (b) Find the energy stored in each individual capacitor. energy stored in C1 ______ J energy stored in C2 ______ J Show that the sum of these two energies is the same as the energy...

  • Two capacitors, C1 = 16.0 μF and C2 = 32.0 μF, are connected in series, and...

    Two capacitors, C1 = 16.0 μF and C2 = 32.0 μF, are connected in series, and a 24.0-V battery is connected across them (a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor equivalent capacitance total energy stored (b) Find the energy stored in each individual capacitor. energy stored in C energy stored in C2 Show that the sum of these two energies is the same as the energy found in part (a). Will this equality always...

  • Two capacitors, C1 = 26.0 μF and C2=37.0 μF, are connected in series, and a 9.0-v battery is connected across them.

    Two capacitors, C1 = 26.0 μF and C2=37.0 μF, are connected in series, and a 9.0-v battery is connected across them. (a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor(b) Find the energy stored in each individual capacitor(c) If the same capacitors were connected in parallel, what potential difference would be required across them so that the combination stores the same energy as in part (a)? Which capacitor stores more energy in this situation, C1 or C2?  

  • Two capacitors, C1 26.0 μF and C2 = 30.0 μF, are connected in series, and a...

    Two capacitors, C1 26.0 μF and C2 = 30.0 μF, are connected in series, and a 6.0-V battery is connected across them. (a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor equivalent capacitance 13.93 total energy stored 25e-5 (b) Find the energy stored in each individual capacitor. energy stored in C1 energy stored in C2 1.340-4X 83.58 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each ste care...

  • Two capacitors, C1 = 4.92 μF and C2 = 14.1 μF, are connected in parallel, and...

    Two capacitors, C1 = 4.92 μF and C2 = 14.1 μF, are connected in parallel, and the resulting combination is connected to a 9.00-V battery. (a) Find the equivalent capacitance of the combination. (b) Find the potential difference across each capacitor. (c) Find the charge stored on each capacitor. *PLEASE ANSWER ALL PARTS TO A, B, AND C CLEARLY* THANK YOU FOR YOUR HELP IN ADVANCE! Safari File Edit View History Bookmarks Window Help 璽台 교 8令49%DE Tue 4:41:04 PM...

  • Two capacitors are connected to each other and the battery is removed. The voltage across each...

    Two capacitors are connected to each other and the battery is removed. The voltage across each capacitor is 5.5 volts. V = V1 = V2 = 5.5 V. The capacitance of C1 = 1.0 x 10 ^-6 F and the capacitance of C2= 2.0 x 10 ^-6 F. What is the charge on each capacitor? If the gap between the plates of C1 if filled with paraffin (dielectric constant K=2.2) what is the new charge on each capacitor and what...

  • Three capacitors having capacitances of 8.3 μF, 8.9 μF and 4.9 μF are connected in series across a 36 V potential difference.

    Three capacitors having capacitances of 8.3 μF, 8.9 μF and 4.9 μF are connected in series across a 36 V potential difference. Part A What is the charge on the 4.9 μF capacitor? Part B What is the total energy stored in all three capacitors?Part C The capacitors are disconnected from the potential difference without allowing them to discharge. They are the reconnected in parallel with each other, with the positively charged plates connected together. What is the voltage across each capacitor...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT