Question

An insulated Thermos contains 170 cm3 of hot coffee at 82.0°C. You put in a 13.0...

An insulated Thermos contains 170 cm3 of hot coffee at 82.0°C. You put in a 13.0 g ice cube at its melting point to cool the coffee. By how many degrees has your coffee cooled once the ice has melted and equilibrium is reached? Treat the coffee as though it were pure water and neglect energy exchanges with the environment. The specific heat of water is 4186 J/kg·K. The latent heat of fusion is 333 kJ/kg. The density of water is 1.00 g/cm3.

Number Enter your answer in accordance to the question statement Units Choose the answer from the menu in accordance to the question statement

the tolerance is +/-2%

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Volume of coffee = 170 cm3 vxd mass of coffee 0.17 X1000 170 grams T = 8200 mass of ice cube = 13 g Tice=0°c Heat gamied by i

Please ask your doubts or queries in the comment section below.

Please kindly upvote if you are satisfied with the solution.

Thank you.

Add a comment
Know the answer?
Add Answer to:
An insulated Thermos contains 170 cm3 of hot coffee at 82.0°C. You put in a 13.0...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An insulated Thermos contains 190 cm3 of hot coffee at 87.0°C. You put in a 13.0...

    An insulated Thermos contains 190 cm3 of hot coffee at 87.0°C. You put in a 13.0 g ice cube at its melting point to cool the coffee. By how many degrees has your coffee cooled once the ice has melted and equilibrium is reached? Treat the coffee as though it were pure water and neglect energy exchanges with the environment. The specific heat of water is 4186 J/kg·K. The latent heat of fusion is 333 kJ/kg. The density of water...

  • An insulated Thermos contains 200 cm3 of hot coffee at 80.0°C. You put in a 16.0...

    An insulated Thermos contains 200 cm3 of hot coffee at 80.0°C. You put in a 16.0 g ice cube at its melting point to cool the coffee. By how many degrees has your coffee cooled once the ice has melted and equilibrium is reached? Treat the coffee as though it were pure water and neglect energy exchanges with the environment. The specific heat of water is 4186 J/kg·K. The latent heat of fusion is 333 kJ/kg. The density of water...

  • Chapter 18, Problem 035 An insulated Thermos contains 150 cm3 of hot coffee at 86.0°c. You...

    Chapter 18, Problem 035 An insulated Thermos contains 150 cm3 of hot coffee at 86.0°c. You put in a 18.0 g ice cube at its melting point to cool the coffee. By how many degrees has your coffee cooled once the ice has melted and equilibrium is reached? Treat the coffee as though it were pure water and neglect energy exchanges with the environment. The specific heat of water is 4186 J/kg K. The latent heat of fusion is 333...

  • An insulated Thermos contains 135 g of water at 86.5 ˚C. You put in a 7.06...

    An insulated Thermos contains 135 g of water at 86.5 ˚C. You put in a 7.06 g ice cube at 0.00 ˚C to form a system of ice + original water. The specific heat of liquid water is 4190 J/kg•K; and the heat of fusion of water is 333 kJ/kg. What is the net entropy change of the system from then until the system reaches the final (equilibrium) temperature?

  • An insulated Thermos contains 143 g of water at 82.8 ˚C. You put in a 9.07...

    An insulated Thermos contains 143 g of water at 82.8 ˚C. You put in a 9.07 g ice cube at 0.00 ˚C to form a system of ice + original water. The specific heat of liquid water is 4190 J/kg•K; and the heat of fusion of water is 333 kJ/kg. What is the net entropy change of the system from then until the system reaches the final (equilibrium) temperature?

  • An insulated Thermos contains 116 g of water at 89.5 ˚C. You put in a 7.91...

    An insulated Thermos contains 116 g of water at 89.5 ˚C. You put in a 7.91 g ice cube at 0.00 ˚C to form a system of ice + original water. The specific heat of liquid water is 4190 J/kg•K; and the heat of fusion of water is 333 kJ/kg. What is the net entropy change of the system from then until the system reaches the final (equilibrium) temperature?

  • An 12 g ice cube at -19?C is put into a Thermos flask containing 100 cm3...

    An 12 g ice cube at -19?C is put into a Thermos flask containing 100 cm3 of water at 20?C. By how much has the entropy of the cube-water system changed when a final equilibrium state is reached? The specific heat of ice is 2200 J/kg K and that of liquid water is 4187 J/kg K. The heat of fusion of water is 333 × 103 J/kg. An 12 g ice cube at -19 C is put into a Thermos...

  • A thermos contains 156 cm3 of coffee at 94.6 °C. To cool the coffee, you drop...

    A thermos contains 156 cm3 of coffee at 94.6 °C. To cool the coffee, you drop two 11.6-g ice cubes into the thermos. The ice cubes are initially at 0 °C and melt completely. What is the final temperature of the coffee in degrees Celsius? Treat the coffee as if it were water

  • A thermos contains 158 cm3 of coffee at 94.2 °C. To cool the coffee, you drop...

    A thermos contains 158 cm3 of coffee at 94.2 °C. To cool the coffee, you drop two 13.5-g ice cubes into the thermos. The ice cubes are initially at 0 °C and melt completely. What is the final temperature of the coffee in degrees Celsius? Treat the coffee as if it were water.

  • An 13 g ice cube at -18˚C is put into a Thermos flask containing 130 cm3...

    An 13 g ice cube at -18˚C is put into a Thermos flask containing 130 cm3 of water at 18˚C. By how much has the entropy of the cube-water system changed when a final equilibrium state is reached? The specific heat of ice is 2200 J/kg K and that of liquid water is 4187 J/kg K. The heat of fusion of water is 333 × 103 J/kg.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT