Question

(10 points) A uniform rod of length L=2m and mass M#2kg is pivoted about a horizontal frict o less pi rod is released from rest at an angle of 30° below the horizontal. The moment of inertia of the rod abou 2 kgm2. a) Draw a diagram of the question showing all related quantities, (5 points) b) Find the angular speed of the rod when it passes through the ve vertical position (5 points
0 0
Add a comment Improve this question Transcribed image text
Answer #1

A2 2 2. 2 2 9 P the val 2

Add a comment
Know the answer?
Add Answer to:
(10 points) A uniform rod of length L=2m and mass M#2kg is pivoted about a horizontal...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 11. A uniform thin rod of length L and mass M, pivoted at one end as...

    11. A uniform thin rod of length L and mass M, pivoted at one end as shown above, is held horizontal and then released from rest. Ignore all effects due to friction. (a) Find the angular speed of the rod as it sweeps through the vertical position. solution: 、13g / L (b) Find the force exerted on the rod by the pivot at this instant. solution Mg (c) Starting from the horizontal position, what initial angular speed would be needed...

  • [7.] A uniform rod with mass M, length L, and moment of inertial with respect to...

    [7.] A uniform rod with mass M, length L, and moment of inertial with respect to the center of mass Icm = MLis hinged at one end (point P) so that it can rotate, without friction, around a horizontal axis. The rod is initially held at rest forming an angle with the vertical (see figure) and then released. a) Find the moment of inertia Ip of the rod with respect to point P. b) Find the magnitude of the angular...

  • A thin uniform rod (length = 1.77 m, mass = 3.13 kg) is pivoted about a...

    A thin uniform rod (length = 1.77 m, mass = 3.13 kg) is pivoted about a horizontal frictionless pin through one of its ends. The moment of inertia of the rod through this axis is (1/3)mL2. The rod is released when it is 58.5° below the horizontal. What is the angular acceleration of the rod at the instant it is released? (in rad/s^2) A: 2.712 B: 3.173 C: 3.713 D: 4.344 E: 5.082 F: 5.946 G: 6.957 H: 8.140

  • A uniform rod of mass M and length L is released from its horizontal position. The...

    A uniform rod of mass M and length L is released from its horizontal position. The rod pivots about a fixed frictionless axis at' onc end and rotates countcrclockwise duc to gravity. It collides and sticks to another rod with same length and mass which is ver- tically at rest. (For a rod with mass M and length L, the moment of inertia about an axis through its one end is given by1-ML) L,M L, M Initial Final (a)(5 pts.)...

  • Problem 3. (24 points) A uniform rod of mass M and length d is free to...

    Problem 3. (24 points) A uniform rod of mass M and length d is free to pivot about one end. The moment of inertia of the rod about the pivot is I = Md2/3, and the rod's center of mass is at its midpoint. The rod is released from rest at angle above the horizontal, then rotates downward under the influence of gravity. d x e When the rod reaches angle below the horizontal, determine (a) (4 points) the rotational...

  • 20 4 points Along, uniform rod of length 1 = 1.0m is pivoted about a frictionless,...

    20 4 points Along, uniform rod of length 1 = 1.0m is pivoted about a frictionless, horizontal pin through one end. The rodis nudged from rest in a vertical position as shown below. At the instant the rod is horizontal, what is its angular speed? Pin O 6.8 Rad/s 2.3 Rad/s 5.4 Rad/s 24.4 Rad/s 12.2 Rad/s

  • A uniform rod of mass 3.00x10-2kg and length 0.420m rotates in a horizontal plane about a...

    A uniform rod of mass 3.00x10-2kg and length 0.420m rotates in a horizontal plane about a fixed axis through its center and perpendicular to the rod. Two small rings, each with mass 0.170kg , are mounted so that they can slide along the rod. They are initially held by catches at positions a distance 5.50x10-2m on each side from the center of the rod, and the system is rotating at an angular velocity 27.0rev/min . Without otherwise changing the system,...

  • The diagram shows a thin rod of uniform mass distribution pivoted about one end by a...

    The diagram shows a thin rod of uniform mass distribution pivoted about one end by a pin passing through that point. The mass of the rod is 0.490 kg and its length is 2.40 m. When the rod is released from its horizontal position, it swings down to the vertical position as shown. M L/2 . CG (a) Determine the speed of its center of gravity at its lowest position. 1.20 Consider the conservation of energy of the center of...

  • The diagram shows a thin rod of uniform mass distribution pivoted about one end by a...

    The diagram shows a thin rod of uniform mass distribution pivoted about one end by a pin passing through that point. The mass of the rod is 0.290 kg and its length is 1.30 m. When the rod is released from its horizontal position, it swings down to the vertical position as shown. Determine the speed of its center of gravity at its lowest position. m/s When the rod reaches the vertical position, calculate the tangential speed of the free...

  • The diagram shows a thin rod of uniform mass distribution pivoted about one end by a...

    The diagram shows a thin rod of uniform mass distribution pivoted about one end by a pin passing through that point. The mass of the rod is 0.490 kg and its length is 2.40 m. When the rod is released from its horizontal position, it swings down to the vertical position as shown. M L/2 1.CG (a) Determine the speed of its center of gravity at its lowest position. m/s (b) When the rod reaches the vertical position, calculate the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT