Question
Please help on physics question
An aluminum bar is moved across conducting rails a
0 0
Add a comment Improve this question Transcribed image text
Answer #1

motional emf e = i*R = B*L*v


i isthe current = 0.5 A

R = 6 ohm

B = 2.5 T

L = 1.2 m

v is the required speed

then i*R = B*L*v


v = i*R/(B*L) = (0.5*6)/(2.5*1.2) = 1 m/s

Add a comment
Know the answer?
Add Answer to:
Please help on physics question An aluminum bar is moved across conducting rails as shown below....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In the figure below, a metal bar sitting on two parallel conducting rails, connected to each other by a resistor, is pulled to the right at a constant speed.

    A vertical bar and two parallel horizontal rails lie in the plane of the page. The parallel rails run from left to right, with one a distance ℓ above the other. The left ends of the rails are connected by a vertical wire containing a resistor R. The vertical bar lies across the rails to the right of the wire. Force vector Fapp points from the bar toward the right.In the figure below, a metal bar sitting on two parallel...

  • A conducting bar moves along frictionless conducting rails connected to a 4.00 omega resistor. The length...

    A conducting bar moves along frictionless conducting rails connected to a 4.00 omega resistor. The length of the bar is 1.60m and a uniform magnetic field of 2.20T is applied perpendicular to the paper pointing outward as shown a) What is the applied force required to move the bar to the right with a constant speed of 6.00 m/s? b) At what rate is energy dissipated in the 4.00 ohm resistor? A conducting bar moves along frictionless conducting rails connected...

  • 23. As shown in the figure below, a conducting bar of length - 20 em is pulled to the left on frictionlessrails at...

    23. As shown in the figure below, a conducting bar of length - 20 em is pulled to the left on frictionlessrails at a constant speed of y 20 m/s. A uniform magnetic field directed out of the page has a magnitude of B-O1T If the rails are connected to a resistor of resistance R-4.0 Ω andan ideal battery of emf e-1.6V, find the magnitude and direction of the current flowing in the circuit formed. Assume that the bar and...

  • Physics help! Consider the arrangement shown in the figure below. Assume R = 8.00 Ohm and...

    Physics help! Consider the arrangement shown in the figure below. Assume R = 8.00 Ohm and l = 1.30 m, and a uniform 2.00-T magnetic field is directed into the page. At what speed should the bar be moved to produce a current of 0.500 A in the resistor?

  • A conducting bar of length ! moves to the right on two frictionless rails as shown...

    A conducting bar of length ! moves to the right on two frictionless rails as shown in the figure below. A uniform magnetic field directed into the page has a magnitude of 0.290 T. Assume R = 9.10 and l = 0.330 m. X X X X X X X X * * *A* X * * * * * * * X X * * x * * * * * * * X X * * x *...

  • A conducting bar of length f moves to the right on two frictionless rails as shown...

    A conducting bar of length f moves to the right on two frictionless rails as shown in the figure below. A uniform magnetic field directed into the page has a magnitude of 0.290 T. Assume R-9.10 Ω and 1 0.320 m. (a) At what constant speed should the bar move to produce an 8.60-mA current in the resistor? 83m/s (b) What is the direction of the induced current? clockwise counterclockwise O into the page O out of the page (c)...

  • A conducting bar of mass m is placed on two long conducting rails

    A conducting bar of mass m is placed on two long conducting rails a distance l apart. The rails are inclined at an angle theta with respect to the horizontal, andthe bar is able to slide on the rails with negligible friction. The bar and rails are in a uniform and constant magnetic field of magnitude B orientedperpendicular to the incline. A resistor of resistance R connects the upper ends of the rails and completes the circuit as shown. The...

  • A pair of conducting, parallel, frictionless rails is mounted on an insulating platform. The distance between...

    A pair of conducting, parallel, frictionless rails is mounted on an insulating platform. The distance between the rails is L = 0.20 m. The rails are connected on one end by a R = 10.12 resistor. A conducting bar of mass 1.2 kg can slide on the rails without friction. When the conducting bar is at x = 0, the enclosed area of the loop is 0.03 m2. There is zero resistance in the conducting bar or rails. A uniform...

  • In this problem, there is a conducting non magnetic bar that is in contact with conducting...

    In this problem, there is a conducting non magnetic bar that is in contact with conducting rails connected to a lightbulb (light bulb reisistance= 12.5 ohms). In this problem friction and air resistance can be ignored. There is a strong magnetic field in the region directed out of the page. The bar reaches a constant speed. The lightbulb used 0.18 W of electrical energy as the bar is falling. the bar has a mass of 650 grams and a length...

  • The figure below shows a top view of a bar that can slide on two frictionless...

    The figure below shows a top view of a bar that can slide on two frictionless rails. The resistor is R = 5.00 Ω, and a 2.50-T magnetic field is directed perpendicularly downward, into the page. Let ℓ = 1.20 m. A vertical bar and two parallel horizontal rails lie in the plane of the page, in a region of uniform magnetic field, vector Bin, pointing into the page. The parallel rails run from left to right, with one a...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT