Question

A certain amount of water contained in a cylinder-piston system developed an isobaric expansion from T1=...

A certain amount of water contained in a cylinder-piston system developed an isobaric expansion from T1= 80 C and x1= 0.289 until T2=120 C. If the work is 250 J. What id the heat transference in kJ?

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
A certain amount of water contained in a cylinder-piston system developed an isobaric expansion from T1=...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • 1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure...

    1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure of 5.1 bar to a pressure of 2.7 bar. Evaluate the work, in kJ/kg. 2.Nitrogen (N2) contained in a piston–cylinder arrangement, initially at 9.3 bar and 437 K, undergoes an expansion to a final temperature of 300 K, during which the pressure–volume relationship is pV1.1 = constant. Assuming the ideal gas model for the N2, determine the heat transfer in kJ/kg. 3.Argon contained in...

  • A kilogram of water is contained on a cylinder-piston system and operates as a heat pump...

    A kilogram of water is contained on a cylinder-piston system and operates as a heat pump The processes are: 1-2: constant vlume heating from P1=5 bar and T1=160° until P2=10 bar 2-3: constant pressure cooling until saturated vapor 3-4: constant volume cooling untl T4=160° 4-1: isotermic expansion with Q4-1= 815.8 kJ Draw the cycle in diagrams P-v and T-v. Determine the performance coefficient, γ, for the heat bomb.

  • Need Help with Thermodynamics Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at...

    Need Help with Thermodynamics Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 239°C from a pressure of 5.6 bar to a pressure of 3.4 bar. Evaluate the work, in kJ/kg. ------------------------------------------------------------------------------------------------------------------------------------------------------------------- Water, initially saturated vapor at 10.7 bar, fills a closed, rigid container. The water is heated until its temperature is 200°C. For the water, determine the heat transfer, in kJ/kg. Kinetic and potential energy effects can be ignored.

  • 2 kg of water is contained in a piston-cylinder setup. The water is initially at a...

    2 kg of water is contained in a piston-cylinder setup. The water is initially at a quality of 0.7 and pressure of 300 kPa. The system is heated until the temperature is 200 °C. During this process, the piston is able to move such that the pressure is maintained at 300 kPa. Find the heat transfer in this process, using units of kJ

  • Water is contained in a piston-cylinder device, where the piston can move in order to maintain...

    Water is contained in a piston-cylinder device, where the piston can move in order to maintain a constant pressure of 300 kPa. Initially, the temperature of the water is 200 degrees Celcius. Heat is removed from the water until it reaches a quality of 0.1. Find the amount of heat transfer to achieve this, in kJ/kg. Answer value in kj/kg

  • One kilogram of water vapor as an ideal gas is contained in a piston. cylinder system...

    One kilogram of water vapor as an ideal gas is contained in a piston. cylinder system at a pressure of 1 bar and a temperature of 120 C. It is compressed adiabatically and irreversibly up to 200 bar. Calculate the work done by the vapor in kJ.

  • A mass of 5.5 kg of saturated liquid-vapor mixture of water is contained in a piston-cylinder...

    A mass of 5.5 kg of saturated liquid-vapor mixture of water is contained in a piston-cylinder at 101.325 kPa. Initially, 2.3 kg of the water is in the liquid phase and the rest is in the vapor phase. Heat is now transferred to the water, and the piston, which is resting on a set of stops, starts moving when the pressure inside reaches 300 kPa. Heat transfer continues until the total volume increases by 21 percent. Determine: a) the initial...

  • * A gas is contained in a vertical, frictionless piston-cylinder device. The piston has a mass...

    * A gas is contained in a vertical, frictionless piston-cylinder device. The piston has a mass of 2 kg and a cross-sectional area of 30 cm2. A spring above the piston is compressed by 2.5 mm and has a spring constant, k, of 38 kN/m. a. If the atmospheric pressure is 1 atm, determine the initial pressure (P1) inside the cylinder. Heat is added to the system until the piston moves an additional 10 mm. b. How much did the...

  • 1. Determine the specific volume of the water as soon as the piston hits the stops,...

    1. Determine the specific volume of the water as soon as the piston hits the stops, in m^3/kg. 2. Determine the final temperature, in Celsius and final pressure, in kPa. 3. Draw the process in a P-V diagram. Indicate the correct phases, units, and numerical values of P and v (specific volume) on the axes. 4. Determine the work in kJ. (please do :))) will give quick thumbs up) 5. Determine the heat transfer, in kJ 6. Determine the total...

  • Saturated water vapor which is initially at 500 kPa is contained in a piston-cylinder device arranged...

    Saturated water vapor which is initially at 500 kPa is contained in a piston-cylinder device arranged to maintain a constant temperature. The piston is now moved until the water becomes a saturated liquid. How much work and how much heat (in kJ/kg) are transferred during this process?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT