Question

As shown in the Figure, the nozzle discharges water vertically downward. Neglecting any viscous effects, Find the velocity of the water at B. The manometer fluid is mercury with specefic weight of 846 lb/ft^3.

6 in. 30 in. 3 ft 15 in. 2 in

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
As shown in the Figure, the nozzle discharges water vertically downward. Neglecting any viscous effects, Find...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Water flows steadily from the large open tank shown in the figure below. If viscous effects...

    Water flows steadily from the large open tank shown in the figure below. If viscous effects are negligible, determine (a) the flowrate, Q, (b) the mercury manometer reading, h. 4. 1m 1.9m 0.07m Mercury 0.09m

  • This nozzle bends the flow from vertically upward to 50 with the horizontal and discharges water...

    This nozzle bends the flow from vertically upward to 50 with the horizontal and discharges water ? 62.4 lbr t3 at a speed of V-190 f s. The volume within the nozzle itself ?? 1.6 ft.. an the weight of the nozz e is 100 b For these conditions, what vertical force must be applied to the nozzle at the flange to hold it in place? 50 \ 0.50 ft2 Volume 1.8ft Flange 2 ft A1.0 ft2 lbf Click here...

  • 5.26 A nozzle is attached to a vertical pipe and discharges water into the atmosphere as...

    5.26 A nozzle is attached to a vertical pipe and discharges water into the atmosphere as shown in Fig. P5.26. When the discharge is 0.1 m/s, the gage pressure at the flange is 40 kPa. Determine the vertical component of the anchoring force required to hold the nozzle in place. The nozzle has a weight of 200 N, and the volume of water in the nozzle is 0.012 mº. Is the anchoring force directed upward or downward? 300 Area =...

  • Water flow in a pipe and then exit through a bended nozzle as shown in Figure...

    Water flow in a pipe and then exit through a bended nozzle as shown in Figure 3. The nozzle is connected to the main pipe using a flanged joint at (1). The diameter of the pipe is D1 10 cm and is constant, whilst the diameter at the outlet section of the nozzle (2) is D2 3 em. The flowrate of the water is Q = 15 liter/s and the water pressure at the flange is Pi 230 kPa. By...

  • 1 (a) A steady stream of water jet discharges from the nozzle with a uniform velocity...

    1 (a) A steady stream of water jet discharges from the nozzle with a uniform velocity of 10 m/s at angle 60° as shown in Figure 1. The jet strikes a horizontal plate 2 m above the nozzle exit. Upon impact, part of the flow is guided towards the left while the remainder towards the right, and the plate is suspended in the air. The weight of the plate is 25 N. Assume frictionless flow along the plate and weight...

  • Water flows through a pipe reducer as shown in the figure. If the manometer reading h - 2 m. Find...

    Water flows through a pipe reducer as shown in the figure. If the manometer reading h - 2 m. Find the flow rate in Liters per second. Assume DI-15 cm, D2-10 cm. SG:-0.80 a. What is the effect of the angle θ b. Is this a practical arrangement, if yes why, if not how would you improve it? c. Ca n mercury be used as a manometer fluid in this arrangement? Why, or why not? SG D2 Water Di Water...

  • Water is discharged through an elbow nozzle as shown below. PB - Patm ds The exit...

    Water is discharged through an elbow nozzle as shown below. PB - Patm ds The exit velocity VB = 30 ft/s, the inlet diameter da = 0.5 ft, the exit diameter dB = 0.25 ft. For water density, use p = 32.2 lb/ft = 1.94 lb/ft. Assume steady flow. Neglect the weight of the nozzle and the water in the nozzle. The mass flow rate through the nozzle is 2.86 slug/s 11.4 slug/s O 92.0 slug/s 18.8 slug/s Determine the...

  • fluid mechanics please fast 1. (15 points) Water (p-1g/cm) is flowing in pipes shown in Figure...

    fluid mechanics please fast 1. (15 points) Water (p-1g/cm) is flowing in pipes shown in Figure below. Use Bernoull's equation to calculate velocity of water at point B. - Fluid velocity in the large diameter pipe is 1m/s. - Pressure at point 2 is measured with U-tube mercury manometer (Pmercury-13,600kg/m) - h1-0.3m, h2-6cm - assume that the acceleration gravity g-10m/s 2 Manometer shows 0.7kPa pressure Ji h1

  • Question 3 (40 marks) (a) Air enters a horizontal nozzle with a velocity of 1 m/s,...

    Question 3 (40 marks) (a) Air enters a horizontal nozzle with a velocity of 1 m/s, a pressure of 2 bar and a temperature of 350 K. At exit from nozzle, the air temperature is 450 K. The combined rate of specific heat transfers, and specific work transfers, w to the air as it passes through the nozzle is 150 kJ/kg. Assume that the air flow is steady and air can be treated as perfect gas with = 1005 J/(kg.K)....

  • Water is siphoned from the large tank shown below. Flow is steady and viscous effects are...

    Water is siphoned from the large tank shown below. Flow is steady and viscous effects are negligible. a) Determine the flowrate from the tank; b) Determine the pressure at points 1, 2 and 3; c) Where is the critical point for cavitation? 2-in.-diameter hose 2 ft |(3) 3 ft 8 ft

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT