Question

In the figure, two blocks, of masses 2.00 kg and 3.00 kg, are connected by a light string that passes over a frictionless pulley of moment of inertia kg m2 and radius 5.00 cm. The of friction for the tabletop is 0.300. 0,00400 a) What is The blocks are released from rest. the acceleration of the system b) Find the speed of the blocks just as the system has moved 0.600 m. kg
0 0
Add a comment Improve this question Transcribed image text
Answer #1

m3 2. T,# 31+9 in 16 a11-5a 6.6 a1 nal spe e2 v 2-106 C2)(1-6)(ob) V 1.42m(sl speed Motion ol wm a= 1.67 6 m Peed 3 kc V - (also) 1.42 mls

Add a comment
Know the answer?
Add Answer to:
In the figure, two blocks, of masses 2.00 kg and 3.00 kg, are connected by a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In the figure, two blocks, of masses 200 kg and 300 kg are connected by a...

    In the figure, two blocks, of masses 200 kg and 300 kg are connected by a light string that passes over a frictionless pulley of moment of inertia 0.00400 kg middot m2 and radius 5.00 cm. The coefficient of friction for the tabletop is 0.300. The blocks are released from rest. What is the acceleration of the system Find the speed of the blocks just as the system has moved 0.600m.

  • In the figure, two blocks, of masses 2.00 kg and 3.00 kg, are connected by a...

    In the figure, two blocks, of masses 2.00 kg and 3.00 kg, are connected by a light string that passes over a frictionless pulley of moment of inertia 0.006kg - m^2 and radius 7.00 cm. Find: a) The acceleration of the blocks b) The angular acceleration of the pulley

  • two blocks of masses 2.00kg and 3.00kg are connected by a light string that passes over...

    two blocks of masses 2.00kg and 3.00kg are connected by a light string that passes over a friction less pulley of moment of inertia 0.00400 kg x m2 and radius of 5.00cm. the coefficient of friction for the tabletop upon which the 3.00kg block rests is 0.300. the blocks are released from rest. using energy methods, find the speed of the upper block just as it has moved 0.600m.

  • In the figure, two 5.10 kg blocks are connected by a massless string over a pulley...

    In the figure, two 5.10 kg blocks are connected by a massless string over a pulley of radius 2.50 cm and rotational inertia 7.40 x 10-4 kg.m2. The string does not slip on the pulley; it is not known whether there is friction between the table and the sliding block; the pulley's axis is frictionless. When this system is released from rest, the pulley turns through 0.600 rad in 109 ms and the acceleration of the blocks is constant. What...

  • In the figure, two 6.20 kg blocks are connected by a massless string over a pulley...

    In the figure, two 6.20 kg blocks are connected by a massless string over a pulley of radius 2.40 cm and rotational inertia of 7.40 Times 10^-1 kg m^2. The string does not slip on the pulley; and there is no friction between the table and the sliding block; the pulley's axis is frictionless. When this system is released from rest the pulley turns through 1.30 rad in 91.0 ms and the acceleration of the blocks is constant. What are...

  • Two blocks are connected to a string, and the string is hung over a pulley connected...

    Two blocks are connected to a string, and the string is hung over a pulley connected to the ceiling, as shown in the figure below. Two blocks, labeled m1 and m2, are connected to a string which is hung over a pulley connected to the ceiling. The pulley is of mass M and radius R. A block labeled m1 hangs suspended off the surface on the left side of the pulley. A block m2 is on the right side of...

  • In the figure, two 5.60 kg blocks are connected by a massless string over a pulley...

    In the figure, two 5.60 kg blocks are connected by a massless string over a pulley of radius 2.20 cm and rotational inertia 7.40 times 10^-4 kg-m^2. The string does not slip on the pulley; it is not known whether there is friction between the table and the sliding block; the pulley's axis is frictionless. When this system is released from rest, the pulley turns through 1.00 rad in 179 ms and the acceleration of the blocks is constant. What...

  • 3) Two blocks with masses ?1 = 3.00 kg and ?2 = 5.00 kg are connected...

    3) Two blocks with masses ?1 = 3.00 kg and ?2 = 5.00 kg are connected by a light rope and slide on a frictionless surface as the figure below. A force ?0 = 10.0 N acts on ?2 at 20⁰ to the horizontal. Find the acceleration of the system and the tension in the rope. ուշ Լա ) Հ30°

  • Objects with masses m1 = 8.0 kg and m2 = 5.00 kg are connected by a...

    Objects with masses m1 = 8.0 kg and m2 = 5.00 kg are connected by a light string that passes over a frictionless pulley as in the figure below. If, when the system starts from rest, m2 falls 1.00 m in 1.70 s, determine the coefficient of kinetic friction between m1 and the table.

  • Two objects with masses of m_1 = 2.00 kg and m_2 = 8.00 kg are connected...

    Two objects with masses of m_1 = 2.00 kg and m_2 = 8.00 kg are connected by a light string that passes over a frictionless pulley, as in the figure below. Determine the tension in the string. (Enter the magnitude only.) Determine the acceleration of each object. (Enter the magnitude only.) Determine the distance each object will move in the first second of motion if both objects start from rest.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT