Question

In the figure, two 5.60 kg blocks are connected by
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Moment of inertia of pulley is given by, I = (1/2) M R2

(7.4 x 10-4 kg.m2) = (1/2) M (0.022 m)2

M = 3.05 kg

(a) Magnitude of the pulley's angular acceleration will be given as :

using a formula, we have

\Delta\theta = \omega0 t + (1/2) \alpha t2

(1 rad) = (0) t + (0.5) \alpha (0.179 s)2

\alpha = (1 rad) / (0.0160205 s2)

\alpha = 62.4 rad/s2

(b) Magnitude of either block's acceleration will be given as :

we know that, a = R \alpha = (0.022 m) (62.4 rad/s2)

a = 1.37 m/s2

(c) The string tension, T1 which is given as :

For Box 1 (hanging), we have

m1 g - T1 = m1 a                                                                    { eq.1 }

T1 = m1 (g - a) = (5.6 kg) [(9.8 m/s2) - (1.37 m/s2)]

T1 = 47.2 N

(d) The string tension, T2 which is given as :

For Box 2 (table surface), we have

T2 - Ff = m2 a                                                               { eq.2 }

For a pulley, we have

R T1 - R T2 = I \alpha

R (T1 - T2) = (1/2) M R2 (a / R)

(T1 - T2) = (1/2) M a                                           

T2 = T1 - (1/2) M a                                                        { eq.3 }

T2 = (47.2 N) - (0.5) (3.05 kg) (1.37 m/s2)

T2 = (47.2 N) - (2.08925 N)

T2 = 45.1 N

Add a comment
Know the answer?
Add Answer to:
In the figure, two 5.60 kg blocks are connected by a massless string over a pulley...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In the figure, two 6.20 kg blocks are connected by a massless string over a pulley...

    In the figure, two 6.20 kg blocks are connected by a massless string over a pulley of radius 2.40 cm and rotational inertia of 7.40 Times 10^-1 kg m^2. The string does not slip on the pulley; and there is no friction between the table and the sliding block; the pulley's axis is frictionless. When this system is released from rest the pulley turns through 1.30 rad in 91.0 ms and the acceleration of the blocks is constant. What are...

  • In the figure, two 5.10 kg blocks are connected by a massless string over a pulley...

    In the figure, two 5.10 kg blocks are connected by a massless string over a pulley of radius 2.50 cm and rotational inertia 7.40 x 10-4 kg.m2. The string does not slip on the pulley; it is not known whether there is friction between the table and the sliding block; the pulley's axis is frictionless. When this system is released from rest, the pulley turns through 0.600 rad in 109 ms and the acceleration of the blocks is constant. What...

  • Two blocks that are both 7 kg are connected by a string that massless and frictionless....

    Two blocks that are both 7 kg are connected by a string that massless and frictionless. The are both being pulled by a pulley over the edge of a table. A. If force is directed to the right and has magnitude 90 N, find the acceleration of the two blocks. B. For the same direction of F and magnitude, find the tension in the string. C. Now a different force, still horizontal, is applied to block A, making the tension...

  • Two blocks are connected by a rope that passes over a massless and frictionless pulley as...

    Two blocks are connected by a rope that passes over a massless and frictionless pulley as shown in the figure below. Given that mı = 18.96 kg and m2 = 10.48 kg, determine the magnitudes of the tension in the rope and the blocks' acceleration. T = a = m/s2 (Enter the magnitude.) m2 Need Help? Read It

  • Two blocks are connected by a lightweight string passing over a pulley, as shown in the figure below. The block with ma...

    Two blocks are connected by a lightweight string passing over a pulley, as shown in the figure below. The block with mass m1 = 16.5 kg on the incline plane accelerates up the plane with negligible friction. The block's acceleration is a = 1.40 m/s2, and the tension in the segment of string attached to this block is T1. The hanging block has a mass of  m2 = 23.5 kg, and the tension in the string attached to it is T2....

  • Two blocks are connected to a string, and the string is hung over a pulley connected...

    Two blocks are connected to a string, and the string is hung over a pulley connected to the ceiling, as shown in the figure below. Two blocks, labeled m1 and m2, are connected to a string which is hung over a pulley connected to the ceiling. The pulley is of mass M and radius R. A block labeled m1 hangs suspended off the surface on the left side of the pulley. A block m2 is on the right side of...

  • Two blocks of mass 3.50 kg and 8.00 kg are connected by amassless string that...

    Two blocks of mass 3.50 kg and 8.00 kg are connected by a massless string that passes over a frictionless pulley as shown in the figure. The inclines are also frictionless. Find (a) the magnitude of the acceleration of each block and (b) the tension in the string

  • Two blocks are connected by a string that passes over a pulley of radius R and...

    Two blocks are connected by a string that passes over a pulley of radius R and moment of Inertia I. The blocks of mass m1 slides on a frictionless, horizontal surface,the block of mass m2 is suspended from the string. Find the acceleration a of the blocks and the Tensions T1 and T2 assuming the string does not slip on the pulley.

  • Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown

    Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of θ1=43.5° with coefficient of kinetic friction μ1=0.205 . M2 has a mass of 6.15 kg and is on an incline of θ2=35.5° with coefficient of kinetic friction μ2=0.105. The two-block system is in motion with the block of mass M2 sliding down the ramp.Find the magnitude...

  • Q1) Two blocks are connected by a string of negligible mass passing over a pulley of...

    Q1) Two blocks are connected by a string of negligible mass passing over a pulley of radius r=0.2 m and moment of inertia I (as shown). The block on the frictionless moving with a constant acceleration o mi T Spulley = 0.2 m a) the tension T. T, m2 20 kg 40 kg) b) the tension T2 c) the net torque (t) on the pulley. d) the moment of inertia (I) of the pulley.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT