Question

3. The electric potential of a charge distribution is equal to V(x, y, z) = a + b xy + cz?, where a, b, c are constants. Writ
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Potential [V= ax3 + bxy +cz3 Electaic field 7 = -2[axt bay +622) { - 2 (ax?tbay+ce?) -? (ax+bxy +(23)Ê Ž -{. 3x+ + by Jî -

Add a comment
Know the answer?
Add Answer to:
3. The electric potential of a charge distribution is equal to V(x, y, z) = a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • V = 3. The potential in a region of space due to a charge distribution is...

    V = 3. The potential in a region of space due to a charge distribution is given by the expression ax?z + bxy - cz? where a = -9.00 V/m3, b = 9.00 V/m², and c = 6.00 V/m2. What is the electric field vector at the point (0, -9.00, -8.00) m? Express your answer in vector form.

  • 3. (20) A spherically symmetric charge distribution creates the following electric field (2) E E,r with...

    3. (20) A spherically symmetric charge distribution creates the following electric field (2) E E,r with 20 r r < a for 4meoa3 (3) E,= Q 4mor2 for r> a where Q and a are positive constants of suitable units. (a) Draw a graph of E, for 0 <r3a; please label your graph clearly (b) Calculate the charge distribution that generates this electric field. (c) Draw a graph of the charge distribution for 0 <r< 3a; please label your graph...

  • 2. A region of space has a potential distribution that can be written as V(x, y,...

    2. A region of space has a potential distribution that can be written as V(x, y, z) = -14xyz + 142 Volts, where x, y, and z are given in meters. a. (7 points) How much work is required to place a +10 uC charge at coordinates (x,y,z) = (10 m, 10 m, 10 m)? b. (7 points) What are the x-, y, and z-components of the electric field at coordinates (x,y,z) = (10 m, 10 m, 10 m)?

  • The equation of electric potential in space is given by: V(x,y,z) = 2xy/x 1. Calculate the...

    The equation of electric potential in space is given by: V(x,y,z) = 2xy/x 1. Calculate the electric potential at point (x = 1, y = -2, z = 3) in space. 2. Find the electric field E vector as a function of x, y, z. 3. Calculate the electric field at point (x = 1, y = -2, z = 3) in space.

  • The electric potential in a region is given by V = 5.00*x^3*y^2*z , where V is...

    The electric potential in a region is given by V = 5.00*x^3*y^2*z , where V is in volts, and coordinates x, y, and z are in meters. Determine the electric field at the point (2.00ˆi − 3.00ˆj − 4.00kˆ ) m . These are my teachers requirements if you could please follow them I would really appreciate it thank you :) In addition to being neat and clear, and actually answering the question, you must: 1) show the original principle...

  • PLEASE HELP! ! In a square 2m × 2m region of space the electric potential, V(x,...

    PLEASE HELP! ! In a square 2m × 2m region of space the electric potential, V(x, y, z), is well described by the function V (x, y, z)=Ax^2y+By. A and B are constants with A=2.0 V/m^3 and B=3.0 V/m. The diagram below shows a contour plot of V (x, y, z) in the x-y plane. Physies 151 Name In a square 2mx2m region of space the electric potential, P(x, y,z), is well described by the function v,ya)-Axy+By. A and B...

  • 6. You are in a region of space where the electric potential is given by: V(x,y,z)...

    6. You are in a region of space where the electric potential is given by: V(x,y,z) Voxy2ln(z) f for all points where z-0 (above the x-y plane)) Find an expression for the electric field Е(x, y, z). State this vectorially.

  • Over a certain region of space, the electric potential is v - -x - 4x²y +...

    Over a certain region of space, the electric potential is v - -x - 4x²y + 3yz?. (a) Find the expressions for the x,y,z components of the electric field over this region. (Use any variable or symbol stated above as necessary.) E (b) What is the magnitude of the field at the point that has coordinates (1.00, 0, -6.00) m? N/C Submit Answer

  • Electric potential for a continuous charge distribution: Let's consider a line of charge, of length L...

    Electric potential for a continuous charge distribution: Let's consider a line of charge, of length L having a uniform charge density lambda = 10^-6 C/m and length L=10 cm. Find the electric potential at point P, which is at a distance Z=5 cm. above the midpoint of the line. where In is the natural logarithm. Consider two charged conducting spheres, radii r1 and r2, with charges q1 and q2, respectively. The spheres are far away from each other but connected...

  • gunel hese In a certain region of space, the electric potential is V(1, y, z) =...

    gunel hese In a certain region of space, the electric potential is V(1, y, z) = 3C21 – Ax? + B2 where A, B and C are positive constants. Calculate the r, y and z components of the electric field. 5.0, ,--B:+203, 2-3-4 Ex = 0, E, E-Bz +20y, E. =-By - A E, = -3C2 + 2A2, E= 0), E. =-3Ct-B E, = -Az +2Br, E, = 0, E: = -A-C E, = -Ay +2BC, E, = -Ar-C, E....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT