Question


8.21 Figure P8.21 provides steady-state operating data for a vapor power plant using water as the working fluid. The mass flo


Steam generator Turbine m= 15 kg/s 10 out 5 PROBE N Condenser Pump Analyzing Bank 3 is the 6 MP h (kJ/kg) T (°C) State 3307.1
0 0
Add a comment Improve this question Transcribed image text
Answer #1


(a) Thermal efficiency=Net Work done_ turbine work -pump work heat supplied heat supplied (4-}-(4-) 199.4-191.83 Thermal effi

Add a comment
Know the answer?
Add Answer to:
8.21 Figure P8.21 provides steady-state operating data for a vapor power plant using water as the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Steady-state operating data for a simple steam power plant are provided in figure. Kinetic and potential...

    Steady-state operating data for a simple steam power plant are provided in figure. Kinetic and potential energy effects can be ignored. Determine the a) the mass flow rate of the steam, (10 pts.) b) Qin . (5 pts.) c) the mass flow rate of the cooling water, (5 pts.) d) thermal efficiency, (5 pts.) e) What happens to the thermal efficiency if we increase the turbine inlet pressure while keeping the inlet temperature (TI) constant? Explain it clearly. (10 pts.)...

  • 6.133 Figure P6.133 shows a simple vapor power cycle operating at steady state with water as...

    6.133 Figure P6.133 shows a simple vapor power cycle operating at steady state with water as the working fluid Data at key locations are given on the figure. Flow through the turbine and pump occurs isentropically. Flow through the steam generator and condenser occurs at constant pressure. Stray heat transfer and kinetic and potential energy effects are negligible. Sketch the four processes of this cycle in series on a T-s diagram. Determine the thermal efficiency P 20 MPa T 700°C...

  • Steady-state operating data for a simple steam power plant are provided in the figure 7. below....

    Steady-state operating data for a simple steam power plant are provided in the figure 7. below. Heat transfer and kinetic and potential energy effects can be ignored. Determine the (a) thermal efficiency and (b) the mass flow rate of the cooling water, in kg per kg of steam flowing Qie/m=3400 kJ/kg P1 4 MPa T 600°C Power out Turbine P2=0.2 bar 2 Steam saturated Cooling water in at T's 15°C generator vapor Condenser Cooling water out at T6 35°C Pump...

  • A Solar Power Facility is a water-vapor power cycle, meaning that H2O is the system that...

    A Solar Power Facility is a water-vapor power cycle, meaning that H2O is the system that does the work... 1: 160 bar, 640 °C A Solar Power Facility is a water-vapor power cycle, meaning that H2O is the system that does the work. turbine boiler Consider a plant that heats the water in the boiler to 160 bar, 640°C. The condenser pressure is 0.1 bar. The inlet to the pump is a saturated liquid at the condenser pressure. 2: 0.1...

  • Steady-state operating data for a simple steam power plant are provided in figure. Kinetic and potential...

    Steady-state operating data for a simple steam power plant are provided in figure. Kinetic and potential energy effects can be ignored. Determine the a) the mass flow rate of the steam, (10 pts.) b) lin, (5 pts.) c) the mass flow rate of the cooling water, (5 pts.) d) thermal efficiency, (5 pts.) e) What happens to the thermal efficiency if we increase the turbine inlet pressure while keeping the inlet temperature (T1) constant? Explain it clearly. (10 pts.) PI...

  • 1) FOUNDATIONAL PROBLEM (20-16-6-0) A Solar Power Facility is a water-vapor power cycle, meaning that H2O...

    1) FOUNDATIONAL PROBLEM (20-16-6-0) A Solar Power Facility is a water-vapor power cycle, meaning that H2O is the system that does the work. 1: 160 bar, 640 °C 1 Wr turbine boiler Consider a plant that heats the water in the boiler to 160 bar, 640°C. The condenser pressure is 0.1 bar. The inlet to the pump is a saturated liquid at the condenser pressure. 2: 0.1 bar condenser Qout Considering steady-state, ideal operation and with no stray heat transfer...

  • Water is the working fluid in an ideal Rankine cycle with reheat. Superheated vapor enters...

    Water is the working fluid in an ideal Rankine cycle with reheat. Superheated vapor enters the turbine at 8 MPa, 480℃, and the condenser pressure is 8 kPa. Steam expands through the first stage turbine to 700 kPa and then is reheated to 480℃. Assumptions: see problem 1 . Determine for the cycle(a) the rate of heat addition, in kJ per kg to the working fluid in the steam generator.(b) the thermal efficiency.(c) the rate of heat transfer from the...

  • 3. A water vapor thermoelectric plant operates in the regenerative Rankine cycle with two open feed...

    3. A water vapor thermoelectric plant operates in the regenerative Rankine cycle with two open feed water heaters as shown in the figure. The plant maintains the turbine inlet at 10 MPa and 600 ° C, and operates the condenser at 5 kPa. Steam is drawn from the turbine at 0.6 and 0.2 MPa. The water comes out of both feed water heaters as a saturated liquid. The isentropic efficiency for the turbine and the pumps is 90%. For a...

  • 3. (a) 10 kg/s of water flows through a simple steady-state vapor-power cycle as shown in...

    3. (a) 10 kg/s of water flows through a simple steady-state vapor-power cycle as shown in the figure. The four states are defined by the given properties in the table. Fill in the missing properties in the table (b) Find the power input to the pump and the rate of entropy change. (c) Find the rate of heat added to the boiler. (c) Find the power output of the turbine and the rate of entropy change. (d) Find the rate...

  • Figure P8.13 provides the steady-state operating data for a solar power plant that operates on a...

    Figure P8.13 provides the steady-state operating data for a solar power plant that operates on a Rankine cycle with Refrigerant 134a as its working fluid. The turbine and pump operate adiabatically. The rate of energy imput to the collectors from solar radiation is 0.3 kw per square meter of collector surface area, with 60 percent of the solar input to the collectors absorbed by the refrigerant as it passes through the collectors. Determine the solar collector surface area, in square...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT