Question


long thin rod length h A particle, with mass m, is moving through space with constant velocity v, as shown in the diagram. COM It eventually collides with and sticks to the end of a long thin uniform rod, which has mass M and length /h and is initially at rest. The mass of the particle (m) is negligible compared with the mass of the rod. (a) Show the angular momentum of the particle about the COM of the rod is L-mh/2. b) Show that the rotational velocity of theystem after the collision is ómv/ith). (c) Write an expression for the rotational kinetic energy after the collision, in terms of the parameters given.
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
long thin rod length h A particle, with mass m, is moving through space with constant...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. A thin rod of mass M and length d hangs vertically from a frictionless pivot...

    1. A thin rod of mass M and length d hangs vertically from a frictionless pivot attached to one end. A piece of clay of mass m moving horizontally at a speed v hits the rod a distance x from the pivot and sticks to it. Discussion Questions: (In the first 5-10 min a random group will be selected to explain.) • What “type” of collision is happening? What is and is not conserved? • Consider the analogous linear momentum...

  • A thin rod of mass m and length l rests on a frictionless table and is struck at a point l/4 from its center of mass by a clay ball of mass m moving at speed v.

    A thin rod of mass m and length l rests on a frictionless table and is struck at a point l/4 from its center of mass by a clay ball of mass m moving at speed v. The ball sticks to the rod. If the rod is free to pivot about a frictionless pin at its center, find the angular velocity of the rod after the collision. Also find the velocity of the point at the top of the rod...

  • Homework 51. (III) A thin rod of mass M and length l rests on a friction-...

    Homework 51. (III) A thin rod of mass M and length l rests on a friction- less table and is struck at a point l/4 from its CM by a clay ball of mass m moving at speed v (Fig. 11-39). The ball sticks to the rod. Determine the translational and rotational motion of the rod after the collision. FIGURE 11-39 Problems 51 and 84. Homework 34. (1) Calculate the angular momentum of a particle of mass m moving with...

  • how do I prove Lf = L/2*mv? A thin rod of mass M and length L...

    how do I prove Lf = L/2*mv? A thin rod of mass M and length L is struck at one end by a ball of clay of mass in, moving with speed v as shown in the figure. The ball sticks to the rod. Determine the angular momentum of the clay-rod system about A (the midpoint of the rod) after the collision.

  • A uniform rod of mass M and length L is released from its horizontal position. The...

    A uniform rod of mass M and length L is released from its horizontal position. The rod pivots about a fixed frictionless axis at' onc end and rotates countcrclockwise duc to gravity. It collides and sticks to another rod with same length and mass which is ver- tically at rest. (For a rod with mass M and length L, the moment of inertia about an axis through its one end is given by1-ML) L,M L, M Initial Final (a)(5 pts.)...

  • Q20 (15 points): A bullet of mass m X102 kg is moving with a speed of...

    Q20 (15 points): A bullet of mass m X102 kg is moving with a speed of 100 m/s when it collides with a rod of mass mR 5 kg and length L m (shown in the figure). The rod is initially at rest, in a vertical position, and pivots about an axis going through its center of mass. The bullet imbeds itself in the rod at a distance L/4 from the pivot point. As a result, the bullet-rod system starts...

  • A uniform thin rod of length 0.95 m and mass 1.2 kg lies in a horizontal...

    A uniform thin rod of length 0.95 m and mass 1.2 kg lies in a horizontal plane and rotates in that plane about a pivot at one of its ends. The rod makes one rotation every 0.39 second and rotates clockwise as viewed from above its plane of rotation. A)Find the magnitude of the rod’s angular momentum about its rotation axis, in units of kgm^/s. b) find the rotational kinetic energy, in joules, of the rod described in part (a)....

  • A long, thin rod of mass M and length L is standing straight up on a...

    A long, thin rod of mass M and length L is standing straight up on a table. Its lower end rotates on a frictionless pivot. A very slight push causes the rod to fall over. A. As it hits the table, what is the angular velocity of the tip of the rod? B. What is the speed of the tip of the rod?

  • Two 3.00 kg balls are attached to the ends of a thin rod of negligible mass,...

    Two 3.00 kg balls are attached to the ends of a thin rod of negligible mass, 50.0 cm long. The rod is free to rotate in a vertical plane without friction about a horizontal axis through its center. While the rod is horizontal (Fig. 12-46), a 65.0 g putty wad drops onto one of the balls with a speed of 3.00 m/s and sticks to it.(a) What is the angular speed of the system just after the putty wad hits?(b)...

  • A long thin bar (length L = 18 cm, mass 1.8 kg) of uniform density is...

    A long thin bar (length L = 18 cm, mass 1.8 kg) of uniform density is placed upon a horizontal, frictionless surface. A small rubber puck (mass 250 g) slides towards the bar with a speed (2 m/s) directed perpendicular to the bar. It collides perfectly elastically with the bar at a distance (d) from the center of mass of the bar in such a way that the puck rebounds with a velocity (1 m/s). a) What is the value...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT