Question

2. Charged ring A ring with an inner radius r. and outer radius & has a uniform surface charge density o. a) Find V (2), the

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Please see image and try to understand thanks

a let take a ring segment of de width of or radars and having charge dę de=a 28 r.dr . Uzzine - ... du = kdę 77252 OJU R2 63

Add a comment
Know the answer?
Add Answer to:
2. Charged ring A ring with an inner radius r. and outer radius & has a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The figure below shows a ring of outer radius R = 13.0 cm, inner radius r...

    The figure below shows a ring of outer radius R = 13.0 cm, inner radius r = 0.480R, and uniform surface charge density σ = 6.20 pC/m2. With V = 0 at infinity, find the electric potential at point P on the central axis of the ring, at distance z = 3.20R from the center of the ring. V

  • The figure shows a ring of outer radius R = 23.0 cm, inner radius r = 0.160R, and uniform surface charge density σ = 8.00 pC/m2

    The figure shows a ring of outer radius R = 23.0 cm, inner radius r = 0.160R, and uniform surface charge density σ = 8.00 pC/m2. With V = 0 at infinity, find the electric potential at point P on the central axis of the ring, at distance z = 2.10R from the center of the ring.

  • need help with this question please FR2 R1 х A flat ring of inner radius R,...

    need help with this question please FR2 R1 х A flat ring of inner radius R, and outer radius Ry has a uniform surface charge density of o. Find an expression for the electric field for points along the x-axis in two ways: (a) Calculate the potential first by treating the ring as a continuous charge distribution. Then find the electric field from the potential. (b) Calculate the electric field directly by treating the ring as a continuous charge distribution.

  • Consider a charged ring with radius R and uniform line charge density +λ.

    Consider a charged ring with radius R and uniform line charge density +λ.(a) Find the electric field at the center O of the ring. (b) What is the electric field at a field point P which is on the central axis with a distance z above the center?  (c) Show that in the limit when z » R, the electric field reduces to the form Does this result physically make sense? Explain. (d) Using binomial approximation, , find the electric field at points along the...

  • Suppose you design an apparatus in which a uniformly charged disk of radius R is to...

    Suppose you design an apparatus in which a uniformly charged disk of radius R is to produce an electric field. The field magnitude is most important along the central perpendicular axis of the disk, at a point P at distance 4.50R from the disk (see Figure (a)). Cost analysis suggests that you switch to a ring of the same outer radius R but with inner radius R/4.50 (see Figure (b)). Assume that the ring will have the same surface charge...

  • Suppose you design an apparatus in which a uniformly charged disk of radius R is to...

    Suppose you design an apparatus in which a uniformly charged disk of radius R is to produce an electric field. The field magnitude is most important along the central perpendicular axis of the disk, at a point P at distance 2.50R from the disk (Fig. a). Cost analysis suggests that you switch to a ring of the same outer radius R but with inner radius R/2.00 (Fig. b). Assume that the ring will have the same surface charge density as...

  • Suppose you design an apparatus in which a uniformly charged disk of radius R is to produce an electric field.

    Suppose you design an apparatus in which a uniformly charged disk of radius R is to produce an electric field. The field magnitude is most important along the central perpendicular axis of the disk, at a point P at distance 4.60R from the disk (see Figure (a)). Cost analysis suggests that you switch to a ring of the same outer radius R but with inner radius R/4.60 (see Figure (b)). Assume that the ring will have the same surface charge...

  • Suppose you design an apparatus in which a uniformly charged disk of radius R is to produce an electric field.

    Suppose you design an apparatus in which a uniformly charged disk of radius R is to produce an electric field. The field magnitude is most important along the central perpendicular axis of the disk, at a point P at distance 2.00R from the dis (see Figure (a)). Cost analysis suggests that you switch to a ring of the same outer radius R but with inner radius R/2.00 (see Figure (b)). Assume that the ring will have the same surface charge...

  • 1. A very long, uniformly charged cylinder has radius R and charge density p. Determine the...

    1. A very long, uniformly charged cylinder has radius R and charge density \rho. Determine the electric field of this cylinder inside (r<R) and outside (r>R)2. A large, flat, nonconducting surface carries a uniform surface charge density σ. A small circular hole of radius R has been cut in the middle of the sheet. Determine the electric field at a distance z directly above the center of the hole.3. You have a solid, nonconducting sphere that is inside of, and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT