Question

A 807 g sample of water is heated by irradiating the sample with infrared light from a CO2 laser beam. The wavelength of this

0 0
Add a comment Improve this question Transcribed image text
Answer #1

q = mSAT s= 4.184 Igrlo(-1 m= 807 g AT=4.93°C i. q = 807 g x 4.184 J9-106 x 4.93 °C - 16646-086 J E = nho n= no. of photons

Add a comment
Know the answer?
Add Answer to:
A 807 g sample of water is heated by irradiating the sample with infrared light from...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • a 312 g sample of a metal is heated to 355.272 c A 312 g sample...

    a 312 g sample of a metal is heated to 355.272 c A 312 g sample of a metal is heated to 355.272 °C and plunged into 200 g of water at a temperature of 45.471 °C. The final temperature of the water is 59.19 °C. Assuming water has a specific heat capacity of 4.184 J/g °C, what is the specific heat capacity of the metal sample, in J/g °C)? Assume no heat loss to the surroundings. Report your response...

  • . A 150.0 g sample of a Metal was heated to 95.0°C. When the hot metal...

    . A 150.0 g sample of a Metal was heated to 95.0°C. When the hot metal was placed into 100.0 g of water in a calorimeter, the temperature of the water increased from 20.0°C to 35.0°C. The specific heat of water is 4.184 J/g °C. a) What is the specific heat of the metal? Kb) What would the final temperature be if the mass of water was 150.0 q?

  • A 312 g sample of a metal is heated to 383.145 °C and plunged into 200...

    A 312 g sample of a metal is heated to 383.145 °C and plunged into 200 g of water at a temperature of 29.934 °C. The final temperature of the water is 82.57 °C. Assuming water has a specific heat capacity of 4.184 J/g °C, what is the specific heat capacity of the metal sample, in J/g °C)? Assume no heat loss to the surroundings. Report your response to 3 digits after the decimal.

  • A 312 g sample of a metal is heated to 283.328 °C and plunged into 200...

    A 312 g sample of a metal is heated to 283.328 °C and plunged into 200 g of water at a temperature of 16.418 °C. The final temperature of the water is 69.021 °C. Assuming water has a specific heat capacity of 4.184 J/g °C, what is the specific heat capacity of the metal sample, in J/g °C)? Assume no heat loss to the surroundings. Report your response to 3 digits after the decimal.

  • Question 3 1 pts A 312 g sample of a metal is heated to 257.896 °C...

    Question 3 1 pts A 312 g sample of a metal is heated to 257.896 °C and plunged into 200 g of water at a temperature of 20.43 °C. The final temperature of the water is 79.548 °C. Assuming water has a specific heat capacity of 4.184 J/g °C, what is the specific heat capacity of the metal sample, in J/g °C)? Assume no heat loss to the surroundings. Report your response to 3 digits after the decimal.

  • Question 2 1 pts A 312 g sample of a metal is heated to 294.133 °C...

    Question 2 1 pts A 312 g sample of a metal is heated to 294.133 °C and plunged into 200 g of water at a temperature of 31.977 °C. The final temperature of the water is 87.391 °C. Assuming water has a specific heat capacity of 4.184 J/g °C, what is the specific heat capacity of the metal sample, in J/g °C)? Assume no heat loss to the surroundings. Report your response to 3 digits after the decimal.

  • A 45.90 g sample of pure copper is heated in a test tube to 99.40°C. The...

    A 45.90 g sample of pure copper is heated in a test tube to 99.40°C. The copper sample is then transferred to a calorimeter containing 61.04 g of deionized water. The water temperature in the calorimeter rises from 24.31°C to 29.10°C. The specific heat capacity of copper metal and water are 0.387 and 4.184, respectively. Assuming that heat was transferred from the copper to the water and the calorimeter, determine the heat capacity of the calorimeter. Heat capacity of calorimeter...

  • A 83.5 g sample of a metal alloy is heated to 88.1oC and it is then...

    A 83.5 g sample of a metal alloy is heated to 88.1oC and it is then placed in a coffee-cup calorimeter containing 30.0 g water at 15.0oC. The final temperature of the metal + water is 25.3 oC. Calculate the specific heat of metal alloy, in J/(g oC), assuming no heat escapes to the surroundings or is transferred to the calorimeter. The specific heat of water is 4.184 J/(g oC).

  • A 45.90 g sample of pure copper is heated in a test tube to 99.40°C. The...

    A 45.90 g sample of pure copper is heated in a test tube to 99.40°C. The copper sample is then transferred to a calorimeter containing 61.04 g of deionized water. The water temperature in the calorimeter rises from 24.47°C to 29.10°C. The specific heat capacity of copper metal and water are J J 0.387 and 4.184 respectively. gr°C g. °C Assuming that heat was transferred from the copper to the water and the calorimeter, determine the heat capacity of the...

  • Assuming that radiation with a wavelength = 15.0 cm is used, that all the energy is converted to heat, and that 4.184 J is needed to raise the temperature of 1.00 g of water by 1.00 degree celcius, how many photons are necessary to raise the temperature o

    Assuming that radiation with a wavelength = 15.0 cm is used, that all the energy is converted to heat, and that 4.184 J is needed to raise the temperature of 1.00 g of water by 1.00 degree celcius, how many photons are necessary to raise the temperature of a 350 mL cup of water from 25 degree C to 95 degree C?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT