Question

Fifty (50.0) mL of 1.25 M AgNO3 and 50.0 mL of 1.75 M HCl are mixed...

Fifty (50.0) mL of 1.25 M AgNO3 and 50.0 mL of 1.75 M HCl are mixed in a coffee cup calorimeter resulting to a mass of solution equal to 101 g. If the two solutions are initially at 25.40 °C and the final T is 22.30 °C. Assume that the specific heat of solution is equal to that of water (4.18 J/g oC). What is the theoretical yield (mol AgCl) & What is the qreaction in kJ/mol AgCl?

Is the ANSWER D?????

A . 0.088 mol AgCl & 15 kJ/mol AgCl

B. 0.088 mol AgCl & 21 kJ/mol AgCl

C. 0.063 mol AgCl & 15 kJ/mol AgCl

D. 0.063 mol AgCl & 21 kJ/molAgCl

0 0
Add a comment Improve this question Transcribed image text
Answer #1

The correct option is (D).

Reaction: AgNO3 (aq) + HCl (ar) → AgNO₃ Car + hoe Age(s) + HNO₃ caq, Moles of He = volume in Lx Molarity in mol/l = (50) L xGiven mass of solution = 1019 Now, a, -mco 1. Von = -mcat --1019 x 4.18 5 x (2230-25-40)°C goc = 1308.758 J V xn in kJ/mol Ag

Add a comment
Know the answer?
Add Answer to:
Fifty (50.0) mL of 1.25 M AgNO3 and 50.0 mL of 1.75 M HCl are mixed...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In a coffee-cup calorimeter, 50.0 ml of .100 M AgNO3 and 50.0 ml of .100 M...

    In a coffee-cup calorimeter, 50.0 ml of .100 M AgNO3 and 50.0 ml of .100 M HCl are mixed to yield the following reaction: Ag+(aq) + Cl-(aq) --> AgCl(s) The two solutions were initially at 22.6°C and the final temp is 23.4°C. Assume that the final solution has a mass of 10.0 g and has a specific heat capacity of 4.184 J/g°C. Calculate delta for the reaction in kJ/mole of AgCl formed.

  • hen 170. mL of 0.209 M NaCl(aq) and 170. mL of 0.209 M AgNO3(aq), both at...

    hen 170. mL of 0.209 M NaCl(aq) and 170. mL of 0.209 M AgNO3(aq), both at 21.6°C, are mixed in a coffee cup calorimeter, the temperature of the mixture increases to 24.2°C as solid AgCl forms. NaCl(aq) + AgNO3(aq) → AgCl(s) + NaNO3(aq) This precipitation reaction produces 3.68 ✕ 103 J of heat, assuming no heat is absorbed by the calorimeter, no heat is exchanged between the calorimeter and its surroundings, and that the specific heat and density of the...

  • 1) Which substance will heat up faster: Aluminum (s) specific heat = 0.90 J/g°C Brass (s)...

    1) Which substance will heat up faster: Aluminum (s) specific heat = 0.90 J/g°C Brass (s) specific heat = 0.380 J/g°C 2)A student mixes 50.0 mL of a 0.100 M AgNO3 solution with 50.0 mL of a 0.100 M HCl solution in a coffee cup calorimeter. Upon mixing the temperature of the resulting solution increases from 22.30°C to 23.11°C. If we assume the resulting solution has a final volume of 100.0 mL and the density and specific heat of the...

  • 2. A 49.45 mL volume of 1.00 M HCl was mixed with 49.14 mL of 2.00...

    2. A 49.45 mL volume of 1.00 M HCl was mixed with 49.14 mL of 2.00 M NaOH in a coffee cup calorimeter (with calorimeter constant = 25.1 J/°C) at 21.34 °C. The final temperature of the aqueous solution after the reaction was 29.37 °C. Assuming that them heat capacity of the solution is 4.18 J/g/°C, calculate the following: e. The enthalpy change (∆H) for the neutralization in kJ/mol HCl ( this should be a negative number) e. The enthalpy...

  • 2. A 49.21 mL volume of 1.00 M HCl was mixed with 48.05 mL of 2.00...

    2. A 49.21 mL volume of 1.00 M HCl was mixed with 48.05 mL of 2.00 M NaOH in a coffee cup calorimeter (with calorimeter constant = 25.6 J/°C) at 20.32 °C. The final temperature of the aqueous solution after the reaction was 29.83 °C. Assuming that them heat capacity of the solution is 4.18 J/g/°C, calculate the following: a. The total mass of aqueous solution inside the calorimeter (dsoln = 1.00 g/mL) g correct 1/1 b. The change in...

  • A 100.0 mL sample of 0.300 M NaOH is mixed with a 100.0 mL sample of...

    A 100.0 mL sample of 0.300 M NaOH is mixed with a 100.0 mL sample of 0.300 M HNO3 in a coffee cup calorimeter. If both solutions were initially at 35.0°C and the temperature of the resulting solution was recorded as 37.0°C, determine the DH°rxn (in units of kJ/mol NaOH) for the neutralization reaction between aqueous NaOH and HCl. Assume 1) that no heat is lost to the calorimeter or the surroundings, and 2)that the density(1.00 g/mL) and the specific...

  • 1. Zinc metal reacts with hydrochloric acid according to the following balanced equation. Zn(s)+2HCl(aq)→ZnCl2(aq)+H2(g) When 0.106...

    1. Zinc metal reacts with hydrochloric acid according to the following balanced equation. Zn(s)+2HCl(aq)→ZnCl2(aq)+H2(g) When 0.106 g of Zn(s) is combined with enough HCl to make 50.1 mL of solution in a coffee-cup calorimeter, all of the zinc reacts, raising the temperature of the solution from 21.9 ∘C to 24.6 ∘C. Part A Find ΔHrxn for this reaction as written. (Use 1.0 g/mL for the density of the solution and 4.18 J/g⋅∘C as the specific heat capacity.) ΔHrxn ΔHrxn =...

  • In a coffee cup calorimeter, 50.0 mL of 1.5 M NaOH and 60.0 mL of 1.4...

    In a coffee cup calorimeter, 50.0 mL of 1.5 M NaOH and 60.0 mL of 1.4 M HCl are mixed at 25.0oC. After the reaction, the temperature is 34.1 oC. Assuming all solutions have a density of 1.00 g/cm3 and a specific heat capacity of 4.18 J/oC g, what is the enthalpy change (kJ) for the reaction?

  • 1. A 100.0 mL sample of 0.300 M NaOH is mixed with a 100.0 mL sample...

    1. A 100.0 mL sample of 0.300 M NaOH is mixed with a 100.0 mL sample of 0.300 M HC1 in a coffee cup calorimeter. If both solutions were initially at 35.00°C and the temperature of the resulting solution was recorded as 37.00°C, determine the AH®rxn (in units of kJ/mol NaOH) for the neutralization reaction between aqueous NaOH and HC1. Use 1.00 g/mL as the density of the solution and Cs, soin = 4.18 J/g • °C as the specific...

  • An 8.000 gram sample of solid NH.NO, was mixed with a 200.00 mL sample of water...

    An 8.000 gram sample of solid NH.NO, was mixed with a 200.00 mL sample of water in a coffee cup calorimeter. The water was initially at 20.0°C and the final temperature of the resulting solution was recorded as 17.1°C. Calculate the experimental AHcoln (in units of kJ/mol NH.NO:) for the dissolution of NH NO3 (molar mass = 80.04 g/mol). Assume that no heat is lost to the calorimeter or the surroundings. The density of water is 1.00 g/mL and the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT