Question

Refrigerant 134a enters a turbine with a mass flow rate of 12 kg/s at 54°C, 3 MPa, while the velocity is negligible. The refr


Refrigerant 134a enters a turbine with a mass flow rate of 12 kg/s at 54°C, 3 MPa, while the velocity is negligible. The refr
0 0
Add a comment Improve this question Transcribed image text
Answer #1

after extracting 10 % of its mass new mass flow rate after the pressure 400 Kpa will becomes 12x0.9 which is 10.8 kg/s

after finding enthalpy at various points we can get the amount of workdone

i have solved in my solution using R134a table

please rate my solution

ThanksPompa P = 400 kPa - 5kpa X₂ = 0.75 work done = m, Chi-ha) + m2 (haha) ka m₂ = 0.9m, 1 = 0.9 x 12 = 10.8 kg h = 712 Kylig at 4

Add a comment
Know the answer?
Add Answer to:
Refrigerant 134a enters a turbine with a mass flow rate of 12 kg/s at 54°C, 3...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Refrigerant 134a enters a compressor with a mass flow rate of 15 kg/s with a velocity...

    Refrigerant 134a enters a compressor with a mass flow rate of 15 kg/s with a velocity of 10 m/s. The refrigerant enters the compressor as a saturated vapor at 10°C and leaves the compressor at 1400 kPa with an enthalpy of 281.39 kJ/kg with a negligible velocity. The rate of work done on the refrigerant is measured to be 380 kW. If the elevation change between the compressor inlet and exit is negligible, determine the rate of heat transfer associated...

  • 6. Refrigerant-134a enters an adiabatic compressor as saturated vapor at 100 kPa at a rate of...

    6. Refrigerant-134a enters an adiabatic compressor as saturated vapor at 100 kPa at a rate of 0.7 m3/min and exits at 1 MPa pressure. If the isentropic efficiency of the compressor is 87%, determine (a) the temperature of the refrigerant at the exit of the compressor, (b) the power input (in kW), and (c) the rate of entropy generation during this process.

  • R-134a enters an adiabatic throttle as a compressed liquid at 18°C. If the refrigerant leaves the...

    R-134a enters an adiabatic throttle as a compressed liquid at 18°C. If the refrigerant leaves the throttle at 70 kPa, determine the quality, in percent of the exit stream. Give your answer to 3 significant figures. Throttling valve R-134a Saturated Mixture Compressed Liquid

  • 4: Refrigerant-134a at 1 MPa and 90°C is to be cooled to 1 MPa and 40°C...

    4: Refrigerant-134a at 1 MPa and 90°C is to be cooled to 1 MPa and 40°C in a condenser by air. The air enters at 100 kPa and 27 C with a volume flow rate of 600 m3/min and leaves at 95 kPa and 65°C Determine the mass flow rate of the refrigerant. 5: The hot- water needs of a household are to be met by heating water at 55°F to 180°F by solar collector at a rate of 5...

  • 5-30 Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and 30 m/s and leaves...

    5-30 Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and 30 m/s and leaves at 100 kPa and 180 m/s. The inlet area of the nozzle is 80 cm². Determine (a) the mass flow rate through the nozzle, (b) the exit temperature of the air, and (c) the exit area of the nozzle. Answers: (a) 0.5304 kg/s, (b) 184.6°C, (c) 38.7 cm P = 300 kPa T, = 200°C Vi = 30 m/s A = 80 cm AIR...

  • In a small power plant, a steam at a rate of 2 kg/s and 4000 kPa...

    In a small power plant, a steam at a rate of 2 kg/s and 4000 kPa enters a two stages steady-flow steam turbine. During the first stage, the steam expands in the turbine while doing work until the turbine exit pressure is 500 kPa. At that point, 10% of the steam is removed from the turbine for other uses. During the second stage, the remaining portion of steam, the 90% of the steam, continues to expand until it exits the...

  • In a small power plant, a steam at a rate of 2 kg/s and 4000 kPa...

    In a small power plant, a steam at a rate of 2 kg/s and 4000 kPa enters a two stages steady-flow steam turbine. During the first stage, the steam expands in the turbine while doing work until the turbine exit pressure is 500 kPa. At that point, 10% of the steam is removed from the turbine for other uses. During the second stage, the remaining portion of steam, the 90% of the steam, continues to expand until it exits the...

  • An industrial steam turbine shown in the figure below receives 20 [kg/s] of superheated steam at...

    An industrial steam turbine shown in the figure below receives 20 [kg/s] of superheated steam at 10 [MPa) and 500 [°C] (State 1). Steam is extracted for another industrial process at a rate of 5 kg/s) ata location in the turbine where the pressure is 1 [MPa) and the temperature is 200 [°C] (State 21. The remaining steam continues to expand through the turbine and exit at State 3, where the pressure is 10 [kPa) and the quality is 90%....

  • In a small power plant, a steam at a rate of 2 kg/s and 4000 kPa...

    In a small power plant, a steam at a rate of 2 kg/s and 4000 kPa enters a two stages steady-flow steam turbine. During the first stage, the steam expands in the turbine while doing work until the turbine exit pressure is 500 kPa. At that point, 10% of the steam is removed from the turbine for other uses. During the second stage, the remaining portion of steam, the 90% of the steam, continues to expand until it exits the...

  • In a small power plant, a steam at a rate of 2 kg/s and 4000 kPa...

    In a small power plant, a steam at a rate of 2 kg/s and 4000 kPa enters a two stages steady-flow steam turbine. During the first stage, the steam expands in the turbine while doing work until the turbine exit pressure is 500 kPa. At that point, 10% of the steam is removed from the turbine for other uses. During the second stage, the remaining portion of steam, the 90% of the steam, continues to expand until it exits the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT