Question

The figure below shows two identical srnal charged spheres. One o mass 3.2 g 1 hanging by an insulating thread o length 20 cm

0 0
Add a comment Improve this question Transcribed image text
Answer #1

18。 20 Qy 97 haing ing max 3.28 Drarsing PBD ree body ragren of hang mass cos e tig Tension mg the Xtiug in hsitont al Cososo Freww tquostion Coto ng Has 2. x. つ 82 =-389.[37241-c u -ve charge

Add a comment
Know the answer?
Add Answer to:
The figure below shows two identical srnal charged spheres. One o mass 3.2 g 1 hanging...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The figure below shows t wo identical small, charged spheres. One of mass 3.8 g is...

    The figure below shows t wo identical small, charged spheres. One of mass 3.8 g is hanging by an insulating thread of length 20.0 cm. The other is held in place and has charge q -4.8 JC. The thread makes an angle of 18° with the vertical, resulting in the spheres being aligned horizontally, a distance r apart. Determine the charge g on the hanging sphere. 173E-11X r response differs significantly from the correct answer. Rework your solution from the...

  • ere are two identical, positively charged conducting spheres fixed in space. The spheres are 43.4 cm...

    ere are two identical, positively charged conducting spheres fixed in space. The spheres are 43.4 cm apart (center to center) and repel each other with an electrostatic force of F10.0795 N. Then, a thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed the spheres still repel but with a force of F2 0.115 N. Using this information, find the initial charge on each sphere, q1 and q2 if initially qī < Q2....

  • There are two identical, positively charged conducting spheres fixed in space. The spheres are 39.4 cm...

    There are two identical, positively charged conducting spheres fixed in space. The spheres are 39.4 cm apart (center to center) and repel each other with an electrostatic force of F1 = 0.0765 N. Then, a thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed the spheres still repel but with a force of F2 = 0.100 N. Using this information, find the initial charge on each sphere, q1 and q2 if initially...

  • There are two identical, positively charged conducting spheres fixed in space. The spheres are 36.6 cm...

    There are two identical, positively charged conducting spheres fixed in space. The spheres are 36.6 cm apart (center to center) and repel each other with an electrostatic force of F1 = 0.0615 N. Then, a thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed the spheres still repel but with a force of F2 = 0.100 N. Using this information, find the initial charge on each sphere, q1 and q2 if initially...

  • There are two identical, positively charged conducting spheres fixed in space. The spheres are 44.0 cm...

    There are two identical, positively charged conducting spheres fixed in space. The spheres are 44.0 cm apart (center to center) and repel each other with an electrostatic force of F1 = 0.0765 N. Then, a thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed the spheres still repel but with a force of F2 = 0.100 N. Using this information, find the initial charge on each sphere, q1 and q2 if initially...

  • There are two identical, positively charged conducting spheres fixed in space. The spheres are 31.6 cm...

    There are two identical, positively charged conducting spheres fixed in space. The spheres are 31.6 cm apart (center to center) and repel each other with an electrostatic force of F1 = 0.0795 N. Then, a thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed the spheres still repel but with a force of F2 = 0.100 N. Using this information, find the initial charge on each sphere, q1 and q2 if initially...

  • There are two identical, positively charged conducting spheres fixed in space. The spheres are 37.4 cm...

    There are two identical, positively charged conducting spheres fixed in space. The spheres are 37.4 cm apart (center to center) and repel each other with an electrostatic force of Fl = 0.0675 N. Then, a thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed the spheres still repel but with a force of F2-0.100 N. Using this information, find the initial charge on each sphere, q1 and q2 if initially q<02. The...

  • There are two identical, positively charged conducting spheres fixed in space. The spheres are 43.4 cm...

    There are two identical, positively charged conducting spheres fixed in space. The spheres are 43.4 cm apart (center to center) and repel each other with an electrostatic force of Fi = 0.0600 N. Then, a thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed the spheres still repel but with a force of F2 0.115 N. Using this information, find the initial charge on each sphere, q1 and q2 if initially q1...

  • There are two identical, positively charged conducting spheres fixed in space. The spheres are 39.8 cm...

    There are two identical, positively charged conducting spheres fixed in space. The spheres are 39.8 cm apart (center to center) and repel each other with an electrostatic force of F1 = 0.0615 N. Then, a thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed the spheres still repel but with a force of F2 = 0.100 N. Using this information, find the initial charge on each sphere, 91 and 92 if initially...

  • The figure below shows four small charged spheres arranged at the corners of a square with...

    The figure below shows four small charged spheres arranged at the corners of a square with side d = 25.0 cm. (Let q1 = +6.00 nC, q2 = +1.00 nC, q3 = +8.00 nC, and q4 = +7.00 nC. Assume q3 is located at the origin and +x axis is to the right and the +y axis is up along the page. Express your answers in vector form.) (a) What is the electric field at the location of the sphere...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT