Question

Work/Energy and Conservation of Energy (Chapter 14 The mass m of 50 kg is guided by the frictionless rail. The spring constant is 3000N/m. The spring is compressed sufficiently in the position shown and released such that the mass just makes it to point B of the curved portion of the rail. Determine the initial compression of the spring. 1. The 25-lb block shown slides on the inclined surface for which the coefficient of kinetic friction is 0.3. Find the maximum force induced in the spring if the motion begins under the conditions shown. Be careful with units. 2. A 6-lb block is attached to a cable and to a spring as shown. The constant of the spring is 8 lbs/inch and the tension in the cable is 3 lbs. If the cable is cut, determine (a) the maximum displacement of the block from the initial position shown, and (b) the maximum speed of the block. 3. 1 rm in/see lo
0 0
Add a comment Improve this question Transcribed image text
Answer #1

m=50 Kg ,k=3000 N/m Total height of point is from initial point h hot 1= 6t107m Initial energy of block a comprenion energy oonly one question per post is allowed please post other questions separately

Please ask if any doubt please rate thanks

Add a comment
Know the answer?
Add Answer to:
Work/Energy and Conservation of Energy (Chapter 14 The mass m of 50 kg is guided by...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • a block with a mass of 2.5 kg starts from rest at the top of the...

    a block with a mass of 2.5 kg starts from rest at the top of the apparatus shown below. it then slides without friction down the incline, and collides with a spring attached to a wall. The spring has a spring constant of K=120N/m. Using the principle of energy conservation, a. find the initial gravitational potential energy of the block at point A b. find the kinetic energy of the block at point B c. what is the velocity of...

  • A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m.

    A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 25° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk=0.18. In the initial position, where the spring is compressed by a distance of d = 0.12 m, the mass is at its lowest...

  • A block of mass m = 3.5 kg is attached to a spring with spring constant k = 780 N/m

    A block of mass m = 3.5 kg is attached to a spring with spring constant k = 780 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 28° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.19. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...

  • A block of mass m = 3.5 kg is attached to a spring with spring constant...

    A block of mass m = 3.5 kg is attached to a spring with spring constant k = 520 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 21° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.16. In the initial position, where the spring is compressed by a distance of d = 0.14 m, the mass is at...

  • Part B (Mechanical Energy and Conservation of Energy) Problem B1: A block of mass m = 0.2kg is held against but not...

    Part B (Mechanical Energy and Conservation of Energy) Problem B1: A block of mass m = 0.2kg is held against but not attached to a spring of so compressed by 20cm, as show below. When released, the block slides som the rough incline before coming to rest. but not attached to a spring of stiffness constant ka 50cm 20cm * = 0, Usp = 0 Low Ug = 0 Use mechanical energy for non-conservative force to find: 1) The force...

  • Physics I. Unit : potential energy and conservation of energy. A,B,C, please In the figure, a...

    Physics I. Unit : potential energy and conservation of energy. A,B,C, please In the figure, a 3.9 kg block is accelerated from rest by a compressed spring of spring constant 630 N/m. The block leaves the spring at the spring's relaxed length and travels over a horizontal floor with a coefficient of kinetic friction mu_k = 0.215. The frictional force stops the block in distance D = 7.7 m. What are (a) the increase in the thermal energy of the...

  • 3. Work and Energy A block of mass 0.50 kg is placed on top of a...

    3. Work and Energy A block of mass 0.50 kg is placed on top of a spring with negligible mass and force constant 5,000 N/m. Initially, the spring is compressed by 0.100 m. After the block is released from rest, it travels vertically upward and leaves the spring. a) What is the speed of the block when it leaves the spring? b) What maximum height does the block reach? c) What is the velocity of the block half-way to the...

  • 1) A block of mass m = 0.52 kg is attached to a spring with force...

    1) A block of mass m = 0.52 kg is attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) (a) At that instant, find the force on the block.   N   (b)...

  • PROBLEM 2 (5 points). Momentum and Mechanical Energy conservation A rifle bullet with mass 150 g...

    PROBLEM 2 (5 points). Momentum and Mechanical Energy conservation A rifle bullet with mass 150 g strikes and embeds itself in a block with mass 1000 g that rests on a frictionless, horizontal surface and is attached to a coil spring. The initial velocity of the bullet was 700 m/s. The impact compresses the springy a distance x. The spring constant is 550 N/m. The spring is ideal. a) Find the magnitude of the block's velocity (with the bullet stuck...

  • A 1.05 kg block slides on a frictionless, horizontal surface with an speed of 1.45 m/sec....

    A 1.05 kg block slides on a frictionless, horizontal surface with an speed of 1.45 m/sec. The block encounters an unstretched spring with a spring constant of 285 N/m. 1)What is the initial kinetic energy of the block before it hits the spring? KE0 = 2)What is the potential energy of the mass and spring system when the spring is at its point of maximum compression? Umax = 3)How far is the spring compress before the block comes to rest?...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT