Question
Answer all parts
2. A 1000 kg car rounds a curve of radius 50 m on a flat road at a speed of 50 km/hr. Will the car make the turn or will it s
0 0
Add a comment Improve this question Transcribed image text
Answer #1

36 00 Frictional force us FNo 60 x 980d na), pre 5880N 2. 1000x(13:89): So Tc Sa dnd Th t that t cam Make the twn Fsuchonal t

Hope this helps....

Add a comment
Know the answer?
Add Answer to:
Answer all parts 2. A 1000 kg car rounds a curve of radius 50 m on...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1000 kg car rounds a curve on a flat road of radius 20 m. if the...

    1000 kg car rounds a curve on a flat road of radius 20 m. if the force of friction between dry pavement and tire is 5800 N, what is the maximum speed the car can safely make the turn?

  • 5. A car with mass of 1200 kg rounds a flat, unbanked curve with radius of...

    5. A car with mass of 1200 kg rounds a flat, unbanked curve with radius of 250 m. (a) Make a free body diagram of this car (1pts). driver can take the curve without sliding is yos. -18m/s. (6pts) (c) Calculate the coefficient of static friction (u, between tires and road. (6pts) at is the magnitude of the maximum friction force necessary to hold a car on the curve if the maximum speed at which the

  • A car rounds a curve that is banked inward. The radius of curvature of the road...

    A car rounds a curve that is banked inward. The radius of curvature of the road is R = 140 m, the banking angle is θ = 26°, and the coefficient of static friction is μs = 0.39. Find the minimum speed that the car can have without slipping. A car rounds a curve that is banked inward. The radius of curvature of the road is R 140 m, the banking angle is 26e, and the coefficient of static minimum...

  • show work 5) Racing on a FLAT track a car going at 32m/s rounds a curve...

    show work 5) Racing on a FLAT track a car going at 32m/s rounds a curve of 56m radius. a) What is the centripetal acceleration of the car? b) Calculate the minimum coefficient of Static Friction needed, between the tires and the road, to round the curve without skidding e) Determine the BANKING ANGLE on a curve of radius 80m, if the marked velocity to enter the curve is 50 miles/hr. 6) A 5g bullet is fired, horizontally, with a...

  • Not yet answered Marked out of 1.00 4 Jlow A 1600kg car rounds a curve on...

    Not yet answered Marked out of 1.00 4 Jlow A 1600kg car rounds a curve on a flat road of radius 62m. If 20 m/s is the maximum velocity with which the car can follow the curve without skidding, what should be the coefficient of static friction of the road? A. 0.66 B. 0.03 PB-m 0.25 D. 0.42 те Select one D B mA- O C.

  • A car rounds a curve that is banked inward. The radius of curvature of the road...

    A car rounds a curve that is banked inward. The radius of curvature of the road is R = 152 m, the banking angle is θ = 32°, and the coefficient of static friction is μs = 0.23. Find the minimum speed that the car can have without slipping.

  • 5. a- A 1100 kg car rounds a curve of radius 64.0 m banked at an...

    5. a- A 1100 kg car rounds a curve of radius 64.0 m banked at an angle of 14°. What is the maximum speed that the car can reach without skidding if the coefficient of static friction between the tires and the road is 0.56? 5. b- A 1.00-kg ball is tied to a 1.04-m long string is being spun in a vertical circle at a constant speed and with a period of 2.00 s. What is the minimum tension...

  • You are driving your car along a flat, curved road; the curve in the road is...

    You are driving your car along a flat, curved road; the curve in the road is a segment of a circle with radius 50 meters. (We call this a "radius of curvature"). How fast can the car drive around the curve if the coefficient of static friction between the tires and the road is 1.0 (tires on dry pavement)? What if the coefficient of friction is 0.2 (tires on ice)?

  • A 2400 lb car rounds a level curve of radius 500 feet on an unbanked (flat)...

    A 2400 lb car rounds a level curve of radius 500 feet on an unbanked (flat) road with a velocity of 30 mph. a) What is the minimum between the tires and the road so the car does not skid? b) At what should the road be banked for this velocity?

  • A highway curve of radius 68.0 m is banked at 21.4 degree so that a car...

    A highway curve of radius 68.0 m is banked at 21.4 degree so that a car traveling at 26.4 m/s (95 km/hr) will utilize both banking and friction to keep it on the curve. Determine the minimum coefficient of static friction between the tires and the road to keep the car on the road at this speed on this curve.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT