Question

a uniform rod of mass 5 kg and length 1.5 meters rotates around a pin through...

a uniform rod of mass 5 kg and length 1.5 meters rotates around a pin through one end. It is released from rest at the horizontal position. What is the angular speed when it reaches the lowest point. (I=1/3 ML^2
0 0
Add a comment Improve this question Transcribed image text
Answer #1

= 1.5m m= 5kg I = ml? uniform rod is located centre of mass of al & distance. 412 Position t W, 20 ur I position 2 دالی here

Add a comment
Know the answer?
Add Answer to:
a uniform rod of mass 5 kg and length 1.5 meters rotates around a pin through...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A uniform rod of length L (2.00 m) and mass M (5.00 Kg) is free to...

    A uniform rod of length L (2.00 m) and mass M (5.00 Kg) is free to rotate on a frictionless pin passing through one end. The rod is released from rest in the horizontal position, (a) What is its angular speed when the rod reaches its lowest position? (b) What arc the linear speed of the center of mass and that of the lowest point on the rod when it is in the vertical position?

  • The diagram shows a thin rod of uniform mass distribution pivoted about one end by a...

    The diagram shows a thin rod of uniform mass distribution pivoted about one end by a pin passing through that point. The mass of the rod is 0.290 kg and its length is 1.30 m. When the rod is released from its horizontal position, it swings down to the vertical position as shown. Determine the speed of its center of gravity at its lowest position. m/s When the rod reaches the vertical position, calculate the tangential speed of the free...

  • The diagram shows a thin rod of uniform mass distribution plvoted about one end by a...

    The diagram shows a thin rod of uniform mass distribution plvoted about one end by a pin passing through that point. The mass of the rod is 0.490 kg and its length is 2.40 m. When the rod is released from its horizontal position, it swings down to the vertical position as shown. (a) (a) Determine the speed of its center of gravity at its lowest position in m/s. Consider the conservation of energy of the center of mass of...

  • The diagram shows a thin rod of uniform mass distribution pivoted about one end by a...

    The diagram shows a thin rod of uniform mass distribution pivoted about one end by a pin passing through that point. The mass of the rod is 0.460 kg and its length is 1.50 m. When the rod is released from its horizontal position, it swings down to the vertical position as shown. A thin rod labeled M is initially horizontal, with a pivot on its left end. The rod then rotates clockwise by its left end until it is...

  • The diagram shows a thin rod of uniform mass distribution pivoted about one end by a...

    The diagram shows a thin rod of uniform mass distribution pivoted about one end by a pin passing through that point. The mass of the rod is 0.490 kg and its length is 2.40 m. When the rod is released from its horizontal position, it swings down to the vertical position as shown. M L/2 . CG (a) Determine the speed of its center of gravity at its lowest position. 1.20 Consider the conservation of energy of the center of...

  • The diagram shows a thin rod of uniform mass distribution pivoted about one end by a...

    The diagram shows a thin rod of uniform mass distribution pivoted about one end by a pin passing through that point. The mass of the rod is 0.490 kg and its length is 2.40 m. When the rod is released from its horizontal position, it swings down to the vertical position as shown. M L/2 1.CG (a) Determine the speed of its center of gravity at its lowest position. m/s (b) When the rod reaches the vertical position, calculate the...

  • 4(12 points) A uniform rod of length L and mass M is attached at one end...

    4(12 points) A uniform rod of length L and mass M is attached at one end to a frictionless pivot and is free to rotate about the pivot in the vertical plane as in Figure. The rod is released from rest in the horizontal position. (a)What are the initial angular acceleration of the rod and the initial translational acceleration of its right end (as shown in Fig.a)? (b)What is its angular speed when the rod reaches its lowest position (as...

  • can you please solve it with an explanation thank you. A uniform rod of length L-1.0...

    can you please solve it with an explanation thank you. A uniform rod of length L-1.0 m and of mass M is hinged at one en position. The moment of inertia as the rod rotates around that hinge is ML213. It is re end is allowed to fall with the other end hinged due to gravity. (20 points) a) What is the angular acceleration b) What is the angular velocity when it reaches the lowest point in r c) F...

  • The diagram shows a thin red of uniform mass distribution pleted about one end by a...

    The diagram shows a thin red of uniform mass distribution pleted about one end by a pin passing through that point. The mass of the rod is 0.490 kg and its length is 2.40 m. When the rod is released from its horizontal position, it swing down to the vertical position as shown. (a) (a) Determine the speed of its center of gravity at its lowest position in my's (b) When the rod reaches the vertical position, calculate the tangential...

  • A uniform rod with a mass of m = 1.85 kg and a length of l...

    A uniform rod with a mass of m = 1.85 kg and a length of l = 2.32 m is attached to a horizontal surface with a hinge. The rod can rotate around the hinge without friction. (See figure.) The rod is held at rest at an angle of ? = 65.8° with respect to the horizontal surface. 1) What is the angular acceleration of the rod, when it is released? 2) What is the angular speed of the rod,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT