Question

3.20 moles of an ideal gas is contained in a piston with at a volume of 275 cm and temperature of 235 °C. It expands at const

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Sollt We know that during process, expansion tisotherme) isobaric T=235°(= 5e8k P = MRT v = 6 W = PAV P(VP-V;) 4.54467706 4.9

Add a comment
Know the answer?
Add Answer to:
3.20 moles of an ideal gas is contained in a piston with at a volume of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Suppose that 292 moles of a monatomic ideal gas is initially contained in a piston with...

    Suppose that 292 moles of a monatomic ideal gas is initially contained in a piston with a volume of 1.34 m3 at a temperature of 588 K. The piston is connected to a hot reservoir with a temperature of 1385 K and a cold reservoir with a temperature of 588 K. The gas undergoes a quasi-static Stirling cycle with the following steps: The temperature of the gas is increased to 1385 K while maintaining a constant volume. The volume of...

  • A cylinder with a movable piston contains 17.5 moles of a monatomic ideal gas at a...

    A cylinder with a movable piston contains 17.5 moles of a monatomic ideal gas at a pressure of 1.66 × 105 Pa. The gas is initially at a temperature of 300 K. An electric heater adds 46600 J of energy into the gas while the piston moves in such a way that the pressure remains constant. It may help you to recall that CPCP = 20.79 J/K/mole for a monatomic ideal gas, and that the number of gas molecules is...

  • Two moles of oxygen gas are contained in a piston and cylinder device. Initially the gas...

    Two moles of oxygen gas are contained in a piston and cylinder device. Initially the gas is at 300. K and sufficient weight is placed on the piston so that the pressure is 2.0 bar. Consider two different processes in which 2000. J of energy in the form of heat are added to the gas in the device. In the second process, the piston is allowed to move freely so that the pressure remains constant. What are the final temperature...

  • 5.00 moles of an ideal gas are contained in a cylinder with a constant external pressure...

    5.00 moles of an ideal gas are contained in a cylinder with a constant external pressure of 1.00 atm and at a temperature of 523 K by a movable, frictionless piston. This system is cooled to 423 K. A) calculate work done on or by the system, w (J) B. Given that the molar heat capacity for an ideal gas is 20.8 J/mol K, calculate q (J) C. Calculate the change in internal energy for this ideal system,in J

  • An ideal gas is enclosed in a cylinder with a movable piston on top of it....

    An ideal gas is enclosed in a cylinder with a movable piston on top of it. The piston has a mass of 8,000 g and an area of 5.00 cm2 and is free to slide up and down, keeping the pressure of the gas constant. (a) How much work is done on the gas as the temperature of 0.130 mol of the gas is raised from 15.0°C to 350°C? (b) What does the sign of your answer to part (a)...

  • A cylinder with a movable piston contains 11.7 moles of a monatomic ideal gas at a...

    A cylinder with a movable piston contains 11.7 moles of a monatomic ideal gas at a pressure of 1.32 × 105 Pa. The gas is initially at a temperature of 300 K. An electric heater adds 43200 J of energy into the gas while the piston moves in such a way that the pressure remains constant. It may help you to recall that CP C P = 20.79 J/K/mole for a monatomic ideal gas, and that the number of gas...

  • A piston contains 600 moles of an ideal monatomic gas that initally has a pressure of...

    A piston contains 600 moles of an ideal monatomic gas that initally has a pressure of 2.35 x 10 Pa and a volume of 1.8 m5. The piston is connected to a hot and cold reservoir and the gas goes through the following quasi-static cycle accepting energy from the hot reservoir and exhausting energy into the cold reservoir 1. The pressure of the gas is increased to 5.35 x 105 Pa while maintaining a constant volume. 2. The volume of...

  • A 19.0- L volume of an ideal gas in a cylinder with a piston is at...

    A 19.0- L volume of an ideal gas in a cylinder with a piston is at a pressure of 3.2 atm . Enough weight is suddenly removed from the piston to lower the external pressure to 1.6 atm . The gas then expands at constant temperature until its pressure is 1.6 atm . The change in the internal energy of a system, ΔE , for an isothermal expansion of an ideal gas is 0. Use this information in your calculations...

  • A cylinder of monatomic ideal gas is sealed in a cylinder by a piston. Initially, the...

    A cylinder of monatomic ideal gas is sealed in a cylinder by a piston. Initially, the gas occupies a volume of 2.50 L and the pressure is initially 125 kPa. The cylinder is placed in an oven that maintains the temperature at a constant value. 80.0 J of work is then done on the piston, compressing the gas (in other words, the gas does -80 J of work). The work is done very slowly so that the gas maintains a...

  • An 80.0-L volume of an ideal gas in a cylinder with a piston is at a...

    An 80.0-L volume of an ideal gas in a cylinder with a piston is at a pressure of 3.0atm. While the system is held at constant temperature, enough weight is placed on the piston to increase the external pressure to 10.0atm. For the resulting process, determine q(heat) and w(work) in units of kJ, and with proper signs. (Note: 1 L atm = 101.3 J)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT