Question

A parallel-plate capacitor is filled partway with a dielectric medium as shown below a) Find D, E, and ps in each region b) Find the length of the dielectric so that the electrostatic energy stored in each region is the same.
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Ain

Add a comment
Know the answer?
Add Answer to:
A parallel-plate capacitor is filled partway with a dielectric medium as shown below a) Find D,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A dielectric-filled parallel-plate capacitor has plate area A = 20.0 cm2 , plate separation d =...

    A dielectric-filled parallel-plate capacitor has plate area A = 20.0 cm2 , plate separation d = 8.00 mm and dielectric constant k = 3.00. The capacitor is connected to a battery that creates a constant voltage V = 15.0 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 A) Find the energy U1 of the dielectric-filled capacitor B) The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find the energy U2...

  • A dielectric-filled parallel-plate capacitor has plate area A =15.0 cm2 , plate separation d =...

    A dielectric-filled parallel-plate capacitor has plate area A = 15.0 cm2 , plate separation d = 10.0 mm and dielectric constant k = 2.00. The capacitor is connected to a battery that creates a constant voltage V = 15.0 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . (All answers in Joules)Part A.) Find the energy U1 of the dielectric-filled capacitor.Part B.) The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the...

  • A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d =...

    A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d = 9.00 mm and dielectric constant k = 4.00. The capacitor is connected to a battery that creates a constant voltage V = 15.0 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . A. Find the energy U1 of the dielectric-filled capacitor. B.The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find the energy U2...

  • (1 point) A parallel plate capacitor is filled with a dielectric that has a dielectric constant...

    (1 point) A parallel plate capacitor is filled with a dielectric that has a dielectric constant of 1.09. The plates have an area of 2.26 mm² and are separated by a distance of 2.86 um. (A) What is the capacitance of this filled capacitor? (B) What is the capcitance of this capacitor when it is empty? (C) If the filled capacitor is connected to a 9 volt battery, what is the charge stored on the plates of this filled capacitor?...

  • A dielectric-filled parallel-plate capacitor has plate area A = 25.0 cm2 , plate separation d =...

    A dielectric-filled parallel-plate capacitor has plate area A = 25.0 cm2 , plate separation d = 10.0 mm and dielectric constant k = 2.00. The capacitor is connected to a battery that creates a constant voltage V = 15.0 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 1. Find the energy U1 of the dielectric-filled capacitor. 2. The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find the energy U2...

  • A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d =...

    A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d = 6.00 mm and dielectric constant k = 3.00. The capacitor is connected to a battery that creates a constant voltage V = 5.00 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 a) The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find the energy U2 of the capacitor at the moment when the capacitor...

  • An air-filled parallel-plate capacitor has plate area A andplate separation d. The capacitor is connected...

    An air-filled parallel-plate capacitor has plate area A and plate separation d. The capacitor is connected to a battery that creates a constant voltage V.A) Find the energy U_0 stored in the capacitor. Express your answer in terms of A, d, V, and ϵ_0.B) The capacitor is now disconnected from the battery, and the plates of the capacitor are then slowly pulled apart until the separation reaches 3d. Find the new energy U_1 of the capacitor after this process. Express...

  • A parallel plate capacitor is filled with a material of dielectric constant K and conductivity g....

    A parallel plate capacitor is filled with a material of dielectric constant K and conductivity g. It is charged with an initial charge Q. (a) Show that the charge leaks off the plates as an exponential function of time. (b) Show that the total joule heat production equals the electrostatic energy stored initially. (c) What is the time constant for the discharge if the material is silicon oxide? (See tables 4-1 and 7-1) table 4-1 table 7-1 the surface charge...

  • The space between the plates of a parallel-plate capacitor, shown below, is filled with two slabs of different dielectric materials

     Problem 5 The space between the plates of a parallel-plate capacitor, shown below, is filled with two slabs of different dielectric materials. The slab at the top has thickness 2d and a relative dielectric constant of er1 = 3 and the one at the bottom has thickness d and a relative dielectric constant of er2 = 2. The capacitor plates have surface area S. a. Assume a total charge of +Q on the top plate and -Q on the bottom plate. Find...

  • A certain parallel-plate capacitor is filled with a dielectric for which κ = 4.61. The area...

    A certain parallel-plate capacitor is filled with a dielectric for which κ = 4.61. The area of each plate is 0.0499 m2, and the plates are separated by 2.22 mm. The capacitor will fail (short out and burn up) if the electric field between the plates exceeds 246 kN/C. What is the maximum energy that can be stored in the capacitor?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT