Question

(1 point) A parallel plate capacitor is filled with a dielectric that has a dielectric constant of 1.09. The plates have an a
(G) If the dielectric is then re-inserted, with the plates insultated so that the charge remains fixed, what is the voltage a
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given Dielectric constant, K=1.09 Area, A= 2.26 man? - 2.26x10m2 seperation disterxe, d= 2.86 yan = p.86 xromm ② capacitance© ©= CV = 7.622 X 1029 Q = 6.859 xroll C= 68.59x1512C Q = Qe 6859x1512 c = 0 68 50 pc @ If the pielectric Removed than all vo

Add a comment
Know the answer?
Add Answer to:
(1 point) A parallel plate capacitor is filled with a dielectric that has a dielectric constant...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 2.0 μF parallel-plate air-filled capacitor is connected across a 10 V battery. (a) Determine the...

    A 2.0 μF parallel-plate air-filled capacitor is connected across a 10 V battery. (a) Determine the charge on the capacitor and the energy stored in the capacitor. (b) An identical 2.0 μF parallel-plate air-filled capacitor is connected across a 5 V battery, and a dielectric slab with dielectric constant κ is inserted between the plates of the capacitor, completely filling the region between the plates, while the battery remains connected. The energy stored in this capacitor is four times that...

  • A dielectric-filled parallel-plate capacitor has plate area A = 20.0 cm2 , plate separation d =...

    A dielectric-filled parallel-plate capacitor has plate area A = 20.0 cm2 , plate separation d = 8.00 mm and dielectric constant k = 3.00. The capacitor is connected to a battery that creates a constant voltage V = 15.0 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 A) Find the energy U1 of the dielectric-filled capacitor B) The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find the energy U2...

  • A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d =...

    A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d = 9.00 mm and dielectric constant k = 4.00. The capacitor is connected to a battery that creates a constant voltage V = 15.0 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . A. Find the energy U1 of the dielectric-filled capacitor. B.The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find the energy U2...

  • A parallel-plate vacuum capacitor is connected to a batteryand charged until the stored electric energy is...

    A parallel-plate vacuum capacitor is connected to a battery and charged until the stored electric energy is U. The battery is removed, and then a dielectric material with dielectric constant K is inserted into the capacitor, filling the space between the plates. Finally, the capacitor is fully discharged through a resistor (which is connected across the capacitor terminals).A.)Find Ur, the the energy dissipated in the resistor.Express your answer in terms of U and other given quantities.B.) Consider the same situation...

  • A dielectric-filled parallel-plate capacitor has plate area A =15.0 cm2 , plate separation d =...

    A dielectric-filled parallel-plate capacitor has plate area A = 15.0 cm2 , plate separation d = 10.0 mm and dielectric constant k = 2.00. The capacitor is connected to a battery that creates a constant voltage V = 15.0 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . (All answers in Joules)Part A.) Find the energy U1 of the dielectric-filled capacitor.Part B.) The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the...

  • A dielectric-filled parallel-plate capacitor has plate area A = 25.0 cm2 , plate separation d =...

    A dielectric-filled parallel-plate capacitor has plate area A = 25.0 cm2 , plate separation d = 10.0 mm and dielectric constant k = 2.00. The capacitor is connected to a battery that creates a constant voltage V = 15.0 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 1. Find the energy U1 of the dielectric-filled capacitor. 2. The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find the energy U2...

  • A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d =...

    A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d = 6.00 mm and dielectric constant k = 3.00. The capacitor is connected to a battery that creates a constant voltage V = 5.00 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 a) The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find the energy U2 of the capacitor at the moment when the capacitor...

  • A parallel-plate capacitor filled with air carries a charge Q. The battery is disconnected, and a...

    A parallel-plate capacitor filled with air carries a charge Q. The battery is disconnected, and a slab of material with dielectric constant k = 2 is inserted between the plates. Which of the following statements is correct? The voltage across the capacitor decreases by a factor of 2. The voltage across the capacitor is doubled.       The electric field is doubled. The charge on the plates decreases by a factor of 2. The charge on the plates is doubled.

  • An air-filled parallel-plate capacitor has plate area A andplate separation d. The capacitor is connected...

    An air-filled parallel-plate capacitor has plate area A and plate separation d. The capacitor is connected to a battery that creates a constant voltage V.A) Find the energy U_0 stored in the capacitor. Express your answer in terms of A, d, V, and ϵ_0.B) The capacitor is now disconnected from the battery, and the plates of the capacitor are then slowly pulled apart until the separation reaches 3d. Find the new energy U_1 of the capacitor after this process. Express...

  • 4. A dielectric-filled capacitor is directly connected to a 12.0-V battery until it is fully charged....

    4. A dielectric-filled capacitor is directly connected to a 12.0-V battery until it is fully charged. Then the capacitor is disconnected from the battery and, once disconnected, the dielectrie is removed so that air fills the capacitor instead. The dielectric used is pyrex glass, whose dielectric constant is 5.6, while the dielectric constant of air is 1.0059. (a) Determine the voltage across the capacitor plates after the dielectric is removed. (b) With the dielectric removed, the capacitor is discharged by...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT