Question

At section (1) in an isentropic flow of carbon dioxide, P1 = 40 kP (abs), TI-60 oC, and V1-350 m/s. Determine the flow velocity at section (2) where the Mach number is 2. Also calculate the section area ratio, A2/A1.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
At section (1) in an isentropic flow of carbon dioxide, P1 = 40 kP (abs), TI-60...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Air flows adiabatically with friction through a long, constant area pipe. At the upstream section, p1=60...

    Air flows adiabatically with friction through a long, constant area pipe. At the upstream section, p1=60 kPa (abs), T1 = 60 oC and V1=200 m/s. At the downstream section, T2 = 30 oC. Determine p2, V2 and the stagnation pressure ratio po2/po1.

  • Carbon dioxide flows steadily through a varying cross-sectional area duct such as a nozzle at a...

    Carbon dioxide flows steadily through a varying cross-sectional area duct such as a nozzle at a mass flow rate of 3.00 kg/s. The carbon dioxide enters the duct at a pressure of 1400 kPa and 200?C with a low velocity and expands in the nozzle to a pressure of 1200 kPa. The duct is designed so that the flow can be approximated as isentropic. Determine the density, velocity, flow area, and Mach number at each location along the duct that...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 321 Inlet pressure: P1 (kPa) = 588 Inlet Velocity: V1 (m/s) = 97 Area at nozzle inlet: A1 (cm^2) =...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) 370 Inlet pressure: P1 (kPa) = 576 Inlet Velocity: V1 (m/s) - 106 Area at nozzle inlet: A1 (cm^2) = 8.32...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 348 Inlet pressure: P1 (kPa) = 544 Inlet Velocity: V1 (m/s) = 122 Area at nozzle inlet: A1 (cm^2) =...

  • Answers a. 156.8 m/s b. 32.5 J/kg K c. 0.763 4.15. Carbon dioxide flows in a...

    Answers a. 156.8 m/s b. 32.5 J/kg K c. 0.763 4.15. Carbon dioxide flows in a horizontal adiabatic, no-work system. Pressure and temper- ature at section 1 are 7 atm and 600 K. At a downstream section, p2 = 4 atm., T2 = 550 K, and the Mach number is M2 = 0.90. (a) Compute the velocity at the upstream location. (b) What is the entropy change? (e) Determine the area ratio A2/A.

  • Air, at po = 160 lbf/in2 and To = 300°F, flows isentropically through a converging-diverging nozzle....

    Air, at po = 160 lbf/in2 and To = 300°F, flows isentropically through a converging-diverging nozzle. At section 1, where A1 = 288 in2, the velocity is V1 = 2068 ft/s. Calculate the inlet Mach number (Ma1) and the throat area (A*). The inlet Mach number is-------- . The throat area is---------- ft2.es Determine the inlet pressure (p1) and the mass flow rate (m.). Round the final answer to three decimal places. The inlet pressure is ----------- lbf/ft2. The mass...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 353 Inlet pressure: Pl (kPa) = 546 Inlet Velocity: V1 (m/s) = 61 Area at nozzle inlet: A1 (cm^2) = 7.24...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 360 Inlet pressure: P1 (kPa) = 583 Inlet Velocity: V1 (m/s) = 105 Area at inlet (cm^2) = 8.2 Mach number at the exit = 1.86 a) Determine...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. So equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 348 Inlet pressure: P1 (kPa) = 544 Inlet Velocity: V1 (m/s) = 122 Area at nozzle inlet: A1 (cm^2) = 8.81...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT