Question

Help Save & Exit Submit Required information A Brayton cycle with regeneration using air as the working fluid has minimum and
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given data

minimum temperature - temperature at compressor inlet

T-310 K

P2 Ps Pressure ratio (rp) =-=-= 7

maximum temperature means turbine at inlet

T3-1150 K

Isentropic efficiency of turbine (nr ) = 0.82

Isentropic expansion process occur in turbine

\frac{T_{3}}{T'_{4}}=\left ( \frac{P_{3}}{P_{4}} \right )^{\frac{\gamma -1}{\gamma }}

1150 = (7) т, 1.4-1 TT

T'_{4}=659.54\textup{ K}

\textup{Isentropic efficiency of turbine}

\eta _{T}=\frac{T_{3}-T_{4}}{T_{3}-T'_{4}}

1150 T4 0.82 = 1150-659.54

T_{4}=747.823\textup{ K}

\textup{Air temperature at turbine exit is 747.823 K}

Add a comment
Know the answer?
Add Answer to:
Help Save & Exit Submit Required information A Brayton cycle with regeneration using air as the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. A regenerative Brayton cycle operates over a pressure ratio of 8. The minimum and maximum...

    1. A regenerative Brayton cycle operates over a pressure ratio of 8. The minimum and maximum temperatures in the cycle are 310 K and 1150 K, respectively. Assume an isentropic compressor efficiency of 75%, an isentropic turbine efficiency of 82%, and a regenerator effectiveness of 0.65. Using constant properties (Cp - 1.005 kJ/kgK, k = 1.4), determine: a) The T-s diagram for all processes including the isentropic processes b) The air temperature at the turbine exit c) The specific network...

  • Pressure ratio of a Brayton cycle with air operated regenerator 8. The lowest and highest temperatures...

    Pressure ratio of a Brayton cycle with air operated regenerator 8. The lowest and highest temperatures of the cycle are 310 K and 1150 K. Adiabatic efficiency of compressor and turbine 75% and 82%, respectively. the efficiency of the regenerator is 65%. The cycle in the T-s diagram Show. Consider the variation of specific temperatures with temperature. a) the temperature of the air at the turbine outlet, b) Net work of the cycle, c) Calculate the thermal efficiency of the...

  • thermodynamic question.please just solve 9-84 9-82 A simple Brayton cycle using air as the working fluid has a pressure ratio of 10. The minimum c and maximum temperatures in the cycle are 295 an...

    thermodynamic question.please just solve 9-84 9-82 A simple Brayton cycle using air as the working fluid has a pressure ratio of 10. The minimum c and maximum temperatures in the cycle are 295 and 1240 K. Assuming an isentropic efficiency of 83 percent for the com pressor and 87 percent for the turbine, determine (a) the air temperature at the turbine exit, (b) the net work output, and (c) the thermal efficiency. 9-84 Repeat Prob. 9-82 using constant specific heats...

  • Air enters the compressor of a cold air-standard Brayton cycle with regeneration at 100 kPa, 300...

    Air enters the compressor of a cold air-standard Brayton cycle with regeneration at 100 kPa, 300 K, with a volume flow rate of 5 m3/s. The compressor pressure ratio is 8, and the turbine inlet temperature is 1400 K. The turbine and compressor each have isentropic efficiencies of 80% and the regenerator effectiveness is 80%. For the air, k = 1.4 and the ambient temperature is T0 = 300 K. -Determine the thermal efficiency of the cycle. -determine the back...

  • An ideal Brayton cycle with regeneration is shown below. Note that from 1 to 6, there...

    An ideal Brayton cycle with regeneration is shown below. Note that from 1 to 6, there is a heat rejection process. The pressure ratio is 10 and the inlet to the compressor is at 300 K and 100 kPa. The maximum temperature is 1100 K. Use air as the working fluid, and assume constant properties evaluated at 300 K.   (a) Find the net work output and the cycle efficiency assuming the effectiveness of the regenerator is 100% (b) Plot the...

  • A simple Brayton cycle using air as the working fluid has a pressure ratio of 10....

    A simple Brayton cycle using air as the working fluid has a pressure ratio of 10. The minimum and maximum temperatures in the cycle are 295 and 1240K. Assuming an isentropic efficiency of 83 percent for the compressor and 87 percent for the turbine. Determine the second law efficiencies of the compressor, the turbine, and the combustion chamber.

  • A brayton cycle with regeneration and intercooling has a pressure ratio of 4 across each compressor...

    A brayton cycle with regeneration and intercooling has a pressure ratio of 4 across each compressor while the total pressure ratio across the turbine is 16. Air enters each compressor at 298K while the inlet gas temperature to the turbine is 1200K. If the regenerator effectiveness is 100%, calculate the cycle thermal efficiency from the heat addition and rejection. 3. A Brayton cycle with regeneration and intercolinig aeross the turbine is across each compressor while the total pressure ratio across...

  • Air enters the compressor of a regenerative air-standard Brayton cycle with a volumetric flow rate of...

    Air enters the compressor of a regenerative air-standard Brayton cycle with a volumetric flow rate of 100 m3/s at 0.8 bar, 280 K. The compressor pressure ratio is 20, and the maximum cycle temperature is 2100 K. For the compressor, the isentropic efficiency is 92% and for the turbine the isentropic efficiency is 95%. For a regenerator effectiveness of 86%, determine: (a) the net power developed, in MW. (b) the rate of heat addition in the combustor, in MW. (c)...

  • Air enters the compressor of a regenerative air-standard Brayton cycle with a volumetric flow rate of...

    Air enters the compressor of a regenerative air-standard Brayton cycle with a volumetric flow rate of 20 m3/s at 0.8 bar, 280 K. The compressor pressure ratio is 20, and the maximum cycle temperature is 1950 K. For the compressor, the isentropic efficiency is 92% and for the turbine the isentropic efficiency is 95%. For a regenerator effectiveness of 86%, determine: (a) the net power developed, in MW. (b) the rate of heat addition in the combustor, in MW. (c)...

  • 6. Repeat Problem 5, but use constant specific heats at the average temperature of (900 K+310...

    6. Repeat Problem 5, but use constant specific heats at the average temperature of (900 K+310 K)2. This will give results that should be comparable (but not identical) to those of Problem 5. 5. A gas-turbine power plant operates on the simple Brayton cycle with air as the working fluid and delivers 32 MW of power. The minimum and maximum temperatures in the cycle are 310 and 900 K, and the pressure of the air at the compressor exit is...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT