Question

The equations of motion for a mass-spring-damper system can be described by mE(t) + ci(t) + k2(t) = F(t), where z(t) is the position of the mass, c is the damper coefficient, k is the spring constant, and F(t) is an external force applied to the mass as an input. If the system state vector is defined by 2(t) = lat) a(t)=F(t), y(t)=2(t), given below: x=Ax + Bu y=Cx + Du.

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
The equations of motion for a mass-spring-damper system can be described by mE(t) + ci(t) +...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Consider a mass-spring-damper system whose motion is described by the following system of differe...

    Consider a mass-spring-damper system whose motion is described by the following system of differentiat equations [c1(f-k)+k,(f-х)-c2(x-9), f=f(t), y:' y(t) with x=x( t), where the function fit) is the input displacement function (known), while xit) and yt) are the two generalized coordinates (both unknown) of the mass-spring-damper systenm. 1. Identify the type of equations (e.g. H/NH, ODE/PDE, L/NL, order, type of coefficients, etc.J. 2. Express this system of differential equations in matrix form, assume f 0 and then determine its general...

  • . Shies Paragraph HW 2-ODE Application Part Al Mass spring damper system as represented in the...

    . Shies Paragraph HW 2-ODE Application Part Al Mass spring damper system as represented in the figure. If the block has a mass of 0.25 g started vibrated freely from rest at the equilibrium position, the spring is a massless with a stiffness of (N/m) and the damping coefficient ciNs/m such that is less than 4 Na/m. Find all possible equations of motion (t) for the block Part If two DC motors applied an external force (t) = n(t) and...

  • 4. The two mass spring damper system below can be represented by the two differential equations...

    4. The two mass spring damper system below can be represented by the two differential equations TIR1 Since the system is represented by two second-order differential equations, find a fourth-order state- space representation, that is y=Cz + Du where A e R1x4, BE Rx, CERix4, and D Rx1. Use the state vector Hint: first, solve the first equation for , then replace by 21, by z2, and r2 by z3 as defined by matrix-vector form.

  • 4 HW_2nd ODE Application Part A) Mass spring damper system as represented in the figure. If...

    4 HW_2nd ODE Application Part A) Mass spring damper system as represented in the figure. If the block has a mass of 0.25 (kg) started vibrated freely from rest at the equilibrium position, the spring is a massless with a stiffness of 4 (N/m) and the damping coefficient C (Ns/m) such that c is less than 4 Ns/m. Find all possible equations of motion for the block. k 772 TH Part B) If a two DC motors applied an external...

  • 3. The motion of a 1DOF mass-spring-damper system (see Figure 1) is modeled by the following seco...

    3. The motion of a 1DOF mass-spring-damper system (see Figure 1) is modeled by the following second order linear ODE: dx,2 dt n dt2 (0) C dt where is the damping ratio an wn is the natural frequency, both related to k, b, and m (the spring constant, damping coefficient, and mass, respectively) (a) Use the forward difference approximations of (b) Using Δt andd to obtain a finite difference formula for x(t+ 2Δ) (like we did in class for the...

  • Question8 n the spring-mass-damper system in Figure 8, the force F, is applied to the mass and it...

    Question8 n the spring-mass-damper system in Figure 8, the force F, is applied to the mass and its displacement is measured via r(t), whilst k and c are the spring and damper constants, respectively x(t) Figure 8: A spring-mass-damper system. a) Obtain the differential equation that relates the input force F, to the measured dis- (6 marks) placement x(t) for the system in Figure 8. b) Draw the block diagram representation of the system in Figure 8. c) Based on...

  • Problem 1 (Harmonic Oscillators) A mass-damper-spring system is a simple harmonic oscillator whose dynamics is governed...

    Problem 1 (Harmonic Oscillators) A mass-damper-spring system is a simple harmonic oscillator whose dynamics is governed by the equation of motion where m is the mass, c is the damping coefficient of the damper, k is the stiffness of the spring, F is the net force applied on the mass, and x is the displacement of the mass from its equilibrium point. In this problem, we focus on a mass-damper-spring system with m = 1 kg, c-4 kg/s, k-3 N/m,...

  • Consider a mass-spring-damper system (i.e., the plant) described by the following second-order differential equation wh...

    Consider a mass-spring-damper system (i.e., the plant) described by the following second-order differential equation where y represents the position displacement of the mass. Our goal is to design a controller so that y can track a reference position r. The tracking error signal is then et)(t). (a) Let there be a PID controller Derive the closed-loop system equation in forms of ODE (b) Draw the block diagram of the whole system using transfer function for the blocks of plant and...

  • Consider the mass-spring-damper system depicted in the figure below, where the input of the system is...

    Consider the mass-spring-damper system depicted in the figure below, where the input of the system is the applied force F(t) and the output of the system is xít) that is the displacement of the mass according to the coordinate system defined in that figure. Assume that force F(t) is applied for t> 0 and the system is in static equilibrium before t=0 and z(t) is measured from the static equilibrium. b m F Also, the mass of the block, the...

  • Given the the mass-spring-damper system in Figure 3.10, assume that the contact forces are viscous friction....

    Given the the mass-spring-damper system in Figure 3.10, assume that the contact forces are viscous friction. 1. State the number of degrees of freedom in the system. 2. Derive the equations of motion and state them in matrix notation. 3. If f(t) = a (a constant), what is the long term state of the system? 4. If the forcing is f(t) = A sin(ωt), and the system parameters are given in Table 3.1, simulate the response from rest. Plot all...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT