Question

QUESTION 8 When the pavement is dry, a car with a mass of 950 kg can drive as fast as 70 km/h on a curve without skidding. When it rains, the coefficient of static friction is 2/3 of the coefficient of static friction under dry conditions. How fast can a 1,100kg car drive on the same curve while raining? 47km/h O 82 km/h 57 km/h 54 km/h ● 66km/h

0 0
Add a comment Improve this question Transcribed image text
Answer #1

from banking angle

tan theta = us = V^2/Rg

V = 70 kmph = 70 * 5/18 = 19.44 m/s

radius of the circle R = v^2/(us* g)

R = 19.44^2/(us * 9.81)

R = 38.52/us m


now v^2 = R g tan theta

V^2 = (38.52/us * 9.81* 2/3 * us)

V = 15.87 m/s

V = 15.87* 18/5 = 57.14 kmph

option three it is

Add a comment
Know the answer?
Add Answer to:
QUESTION 8 When the pavement is dry, a car with a mass of 950 kg can...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A curve of radius 160 m is banked at an angle of 10. An 800-kg car...

    A curve of radius 160 m is banked at an angle of 10. An 800-kg car moves the curve at 85 km/h without skidding. Neglect the effects of air drag. Find (a) The frictional force exerted by the pavement on the tires (b) The minimum coefficient of static friction between the pavement and the tires.

  • A curve that has a radius of 105 m is banked at an angle of ?=10.2∘....

    A curve that has a radius of 105 m is banked at an angle of ?=10.2∘. If a 1000 kg car navigates the curve at 65 km/h without skidding, what is the minimum coefficient of static friction ?s between the pavement and the tires?

  • A curve that has a radius of 105 m is banked at an angle of 0...

    A curve that has a radius of 105 m is banked at an angle of 0 = 10.2°. If a 1100 kg car navigates the curve at 75 km/h without skidding, what is the minimum coefficient of static friction us between the pavement and the tires? e

  • You are driving your car along a flat, curved road; the curve in the road is...

    You are driving your car along a flat, curved road; the curve in the road is a segment of a circle with radius 50 meters. (We call this a "radius of curvature"). How fast can the car drive around the curve if the coefficient of static friction between the tires and the road is 1.0 (tires on dry pavement)? What if the coefficient of friction is 0.2 (tires on ice)?

  • Part A If the coefficient of kinetic friction between tires and dry pavement is 0.77, what...

    Part A If the coefficient of kinetic friction between tires and dry pavement is 0.77, what is the shortest distance in which you can stop an automobile by locking the brakes when traveling at 34.5 m/s ? Part B On wet pavement, the coefficient of kinetic friction may be only 0.25. How fast should you drive on wet pavement in order to be able to stop in the same distance as in part A? (Note: Locking the brakes is not...

  • 1) A car with mass m = 1000 kg is traveling around a circular curve of...

    1) A car with mass m = 1000 kg is traveling around a circular curve of radius r = 990 m when it begins to rain. The coefficients of static friction between the road and tires is μd = 0.66 when dry and μw = 0.26 when wet. a) Write an expression for the maximum magnitude of the force of static friction Ff acting on the car if μs is the coefficient of friction. b) What is the maximum tangential...

  • gth of the Cirrl 1. A 1300 kg car moving on a flat, horizontal road negotiates...

    gth of the Cirrl 1. A 1300 kg car moving on a flat, horizontal road negotiates a curve as shown in figure. If the radius of the curve is 40 m and the coefficient of static friction between the tires and dry pavement is 0.6, find the maximum speed the car can have and still make the turn successfully.

  • 015 10.0 points A highway curves to the left with radius of curvature of 34 m...

    015 10.0 points A highway curves to the left with radius of curvature of 34 m and is banked at 18° so that cars can take this curve at higher speeds. Consider a car of mass 1777 kg whose tires have a static friction coefficient 0.58 against the pavement. top view R 34 m 18 rear view μ = 0.58 How fast can the car take this curve without skidding to the outside of the curve? The acceleration of gravity...

  • 015 10.0 points A highway curves to the left with radius o curvature of 34 m...

    015 10.0 points A highway curves to the left with radius o curvature of 34 m and is banked at 18° s that cars can take this curve at higher speeds Consider a car of mass 1777 kg whose tires have a static friction coefficient 0.58 against the pavement top view R-34111 18 rear view 0.58 How fast can the car take this curve without skidding to the outside of the curve? The acceleration of gravity is 9.8 m/s2. Answer...

  • 015 10.0 points A highway curves to the left with radius of curvature of 35 m...

    015 10.0 points A highway curves to the left with radius of curvature of 35 m and is banked at 16° So that cars can take this curve at higher speeds Consider a car of mass 1341 kg whose tires have a static friction coefficient 0.44 against the pavement top view R 35 m 16 rear 0. view How fast can the car take this curve without skidding to the outside of the curve? The acceleration of gravity is 9.8...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT