Question

1) A car with mass m = 1000 kg is traveling around a circular curve of...

1) A car with mass m = 1000 kg is traveling around a circular curve of radius r = 990 m when it begins to rain. The coefficients of static friction between the road and tires is μd = 0.66 when dry and μw = 0.26 when wet.

a) Write an expression for the maximum magnitude of the force of static friction Ff acting on the car if μs is the coefficient of friction.

b) What is the maximum tangential speed that the car can take the corner at without slipping when dry in m/s?

c) What is the maximum tangential speed when wet in m/s?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Please give a positive rating by clicking on the thumbs up ? button if you get benefited from this answer? have a good day ahead. Thank you?

Add a comment
Know the answer?
Add Answer to:
1) A car with mass m = 1000 kg is traveling around a circular curve of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A car of mass M = 1500 kg traveling at 55.0 km/hour enters a level turn...

    A car of mass M = 1500 kg traveling at 55.0 km/hour enters a level turn (θ=0), and there is a coefficient of static friction μ between the road and the car's tires. What is μmin, the minimum value of the coefficient of static friction between the tires and the road required to prevent the car from slipping? Assume that the car's speed is still 55.0 km/hour and that the radius of the curve is 65.4 m .

  • A car of mass M = 800 kg traveling at 55.0 km/hour enters a banked turn...

    A car of mass M = 800 kg traveling at 55.0 km/hour enters a banked turn covered with ice. The road is banked at an angle ?, and there is no friction between the road and the car's tires as shown in(Figure 1) . Use g = 9.80 m/s2 throughout this problem. Now, suppose that the curve is level (?=0) and that the ice has melted, so that there is a coefficient of static friction ? between the road and...

  • A car of mass M = 1300 kg traveling at 65.0 km/hour enters a banked turn...

    A car of mass M = 1300 kg traveling at 65.0 km/hour enters a banked turn covered with ice. The road is banked at an angle θ, and there is no friction between the road and the car's tires as shown in (Figure 1) . Use g = 9.80 m/s2 throughout this problem. r= 91.43 m. Now, suppose that the curve is level (θ=0) and that the ice has melted, so that there is a coefficient of static friction μ...

  • Suppose that the coefficient of friction between a car's tires and the road is 0.600 when...

    Suppose that the coefficient of friction between a car's tires and the road is 0.600 when the road is dry and 0.350 when the road is wet. If on a certain curve the maximum speed the car can go without slipping is 42.0 m/s when the road is dry, what is the maximum speed the car can go on the same curve without slipping when the road is wet?

  • A car is safely negotiating an unbanked circular turn at a speed of 29 m/s. The...

    A car is safely negotiating an unbanked circular turn at a speed of 29 m/s. The road is dry, and the maximum static frictional force acts on the tires. Suddenly a long wet patch in the road decreases the maximum static frictional force to one-sixth of its dry-road value. If the car is to continue safely around the curve, to what speed must the driver slow the car? m/s

  • You are designing a circular unbanked freeway ramp with a radius of 100. m, the coefficient...

    You are designing a circular unbanked freeway ramp with a radius of 100. m, the coefficient of static friction between the tires and asphalt is 0.800 dry and 0.400 wet. Find the maximum speed that a car can travel through the ramp during when the road is dry and wet in mph (miles per hour). Vmax, dry = Vmax, wet =

  • The driver of a car of mass M which is moving along a straight road with...

    The driver of a car of mass M which is moving along a straight road with initial speed v0 sees a deer in her headlights, and reacts quickly, lifting her foot of the gas and applying the brake pedal with maximum force. The anti-lock brakes cause the largest possible static friction force to be applied on the tires by the road, which continue to roll so the car does not skid. The coefficient of static friction between the tires and...

  • A car travels at a constant speed of 32.5 mi/h (14.5 m/s) on a level circular...

    A car travels at a constant speed of 32.5 mi/h (14.5 m/s) on a level circular turn of radius 49.0 m, as shown in the bird's-eye view in figure a. What minimum coefficient of static friction, μs, between the tires and the roadway will allow the car to make the circular turn without sliding? 1 ) make the circular turn without sliding? 2 ) At what maximum speed can a car negotiate a turn on a wet road with coefficient...

  • Part A. The sports car, having a mass of 1700 kg, is traveling horizontally along a...

    Part A. The sports car, having a mass of 1700 kg, is traveling horizontally along a 20° banked track which is circular and has a radius of curvature of ρ = 100 m. If the coefficient of static friction between the tires and the road is μs = 0.2 . Determine the maximum constant speed at which the car can travel without sliding up the slope. Neglect the size of the car. Part B. Using Data in Part A, determine...

  • A car is safely negotiating an unbanked circular turn at a speed of 18 m/s. The road is dry, and the maximum static fri...

    A car is safely negotiating an unbanked circular turn at a speed of 18 m/s. The road is dry, and the maximum static frictional force acts on the tires. Suddenly a long wet patch in the road decreases the maximum static frictional force to one third of its dry-road value. If the car is to continue safely around the curve, to what speed must the dirver slow the car?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT