Question

You are designing a circular unbanked freeway ramp with a radius of 100. m, the coefficient...

You are designing a circular unbanked freeway ramp with a radius of 100. m, the coefficient of static friction between the tires and asphalt is 0.800 dry and 0.400 wet. Find the maximum speed that a car can travel through the ramp during when the road is dry and wet in mph (miles per hour).

Vmax, dry =

Vmax, wet =

0 0
Add a comment Improve this question Transcribed image text
Answer #1

speed during the turn = sqrt(urg)

where u = friction

r = radius

g= acceleration due to gravity

v(max , dry) = sqrt(0.8*100*9.8)

= 28 m/s

v(max , wet) = sqrt(0.4*100*9.8) = 19.8 m/s

Add a comment
Know the answer?
Add Answer to:
You are designing a circular unbanked freeway ramp with a radius of 100. m, the coefficient...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A car is safely negotiating an unbanked circular turn at a speed of 29 m/s. The...

    A car is safely negotiating an unbanked circular turn at a speed of 29 m/s. The road is dry, and the maximum static frictional force acts on the tires. Suddenly a long wet patch in the road decreases the maximum static frictional force to one-sixth of its dry-road value. If the car is to continue safely around the curve, to what speed must the driver slow the car? m/s

  • A car is safely negotiating an unbanked circular turn at a speed of 18 m/s. The road is dry, and the maximum static fri...

    A car is safely negotiating an unbanked circular turn at a speed of 18 m/s. The road is dry, and the maximum static frictional force acts on the tires. Suddenly a long wet patch in the road decreases the maximum static frictional force to one third of its dry-road value. If the car is to continue safely around the curve, to what speed must the dirver slow the car?

  • The Big-I in Albuquerque, NM has an exit ramp that takes southbound traffic eastwards. The ramp...

    The Big-I in Albuquerque, NM has an exit ramp that takes southbound traffic eastwards. The ramp is a circular arc of radius 56.5 m, and banked at 32o. The posted speed is 45 mph, which allows a car to neither slide up nor down the incline. Show how to determine the coefficient of friction (kinetic or static?) between the road and the car tires. On an icy day when the coefficient of friction is 30% that of the dry road,...

  • A flat (unbanked) curve on a highway has a radius of 250 m

    A flat (unbanked) curve on a highway has a radius of 250 m. A car successfully rounds the curve at a speed of 35 m/s but is on the verge of skidding out. a. Draw free body diagram of the car. b. If the coefficient of static friction between the car's tires and the road surface were reduced by a factor of 2, with what maximum speed could the car round the curve without slipping? c. Suppose the coefficient of friction were increased...

  • 1) A car with mass m = 1000 kg is traveling around a circular curve of...

    1) A car with mass m = 1000 kg is traveling around a circular curve of radius r = 990 m when it begins to rain. The coefficients of static friction between the road and tires is μd = 0.66 when dry and μw = 0.26 when wet. a) Write an expression for the maximum magnitude of the force of static friction Ff acting on the car if μs is the coefficient of friction. b) What is the maximum tangential...

  • Two curves on a highway have the same radii. However, one is unbanked and the other...

    Two curves on a highway have the same radii. However, one is unbanked and the other is banked at an angle of degrees. A car can safely travel along the unbanked curve at a maximum speed under conditions when the coefficient of static friction between the tures and the road is . The banked curve is frictionless, and the car can negotiate it at the same maximum speed . Find the coefficient of static friction between the tires and the...

  • A car travels around an unbanked 60 m radius curve without skidding, If the coefficient of...

    A car travels around an unbanked 60 m radius curve without skidding, If the coefficient of friction between the tires and road is 0.4, what is the car's maximum speed? 55 kph 47 43 kph 76 kph 62 kph

  • A particular unbanked turn in the road is shaped like a circle with a radius of...

    A particular unbanked turn in the road is shaped like a circle with a radius of 30 meters. A car with a mass of 1500 kg can safely go around this turn at a maximum speed of 17 m/s. What is the coefficient of static friction between the car's tires and the road?

  • A flat (unbanked) curve on a highway has a radius of 240 m . A car...

    A flat (unbanked) curve on a highway has a radius of 240 m . A car successfully rounds the curve at a speed of 37 m/s but is on the verge of skidding out. Part A If the coefficient of static friction between the car’s tires and the road surface were reduced by a factor of 2, with what maximum speed could the car round the curve? Express your answer in meters per second to two significant figures. part B...

  • 5. A car with mass of 1200 kg rounds a flat, unbanked curve with radius of...

    5. A car with mass of 1200 kg rounds a flat, unbanked curve with radius of 250 m. (a) Make a free body diagram of this car (1pts). driver can take the curve without sliding is yos. -18m/s. (6pts) (c) Calculate the coefficient of static friction (u, between tires and road. (6pts) at is the magnitude of the maximum friction force necessary to hold a car on the curve if the maximum speed at which the

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT