Question

NAME (PRINT): 1. Air (ideal gas with k = 1.4 and Cp = 1.004) enters the steady-state operating compressor at P1 = 100 kPa and

0 0
Add a comment Improve this question Transcribed image text
Answer #1

- P2=33okla 72=1476 =1477273 -420K Compressie 1-4 Thes = ( 12 kvk 1.44/114 0 + Gp=1.004kuligle Pak. Pi = lookpa Ti =17€ = 12+

Add a comment
Know the answer?
Add Answer to:
NAME (PRINT): 1. Air (ideal gas with k = 1.4 and Cp = 1.004) enters the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Air modeled as an ideal gas enters a turbine operating at steady state at 1040 K,...

    Air modeled as an ideal gas enters a turbine operating at steady state at 1040 K, 278 kPa and exits at 120 kPa. The mass flow rate is 5.5 kg/s, and the power developed is 1200 kW. Stray heat transfer and kinetic and potential energy effects are negligible. Assuming k = 1.4, determine: (a) the temperature of the air at the turbine exit, in K. (b) the percent isentropic turbine efficiency.

  • An aircraft engine operates on a simple ideal Brayton cycle with a pressure ratio rp of...

    An aircraft engine operates on a simple ideal Brayton cycle with a pressure ratio rp of 9. Heat is added to the cycle at a rate of 490 kW; air passes through the engine at a rate of 1.1 kg/s; and the air at the beginning of the compression is at P1 = 71 kPa and T1 = 0 oC. Use constant specific heats at room temperature. The properties of air at room temperature are cp =1.005 kJ/kg.K and k...

  • Air is compressed by an adiabatic compressor from P2=100 kPa to P2=500 kPa. T2=380 K and...

    Air is compressed by an adiabatic compressor from P2=100 kPa to P2=500 kPa. T2=380 K and T2=650 K. Air is an ideal gas with variable specific heats. Determine a) The exit temperature of the air for the isentropic case. Each of the above temperatures and pressures are given as actual. b) The efficiency of the compressor.

  • An ideal gas (k=1.4, R=0.27 kJ/kg K) enters a steady, single inlet, single outlet compressor that...

    An ideal gas (k=1.4, R=0.27 kJ/kg K) enters a steady, single inlet, single outlet compressor that is operating reversibly at 1 bar and 30 °C and exits at 5 bar. Find the specific work (W = .) if the compressor is operating isothermally and kinetic and potential energy changes are neglected. 0-188.47 kJ/kg O None of the choices are correct O-110.39 kJ/kg 0-131.73 kJ/kg 0-140.42 kJ/kg

  • Air, modeled as an ideal gas, enters a turbine operating at steady state at 450 kPa,...

    Air, modeled as an ideal gas, enters a turbine operating at steady state at 450 kPa, 800 K and exits at 100 kPa. The temperature of the exiting air is 420 K. a) If the turbine is well insulated and you can ignore kinetic and potential energy effects, determine if the exit temperature can be correct. b) What if the exit temperature is 550 K? Explain you’re your reasoning. Hint: Find the entropy generation rate first.

  • An air compressor is operating at a steady state with a mass flow rate of 1.3...

    An air compressor is operating at a steady state with a mass flow rate of 1.3 kg/s. The inlet pressure and temperature are P1 171 kPa and T1 319 K, respectively. The exit pressure and temperature are P2 609 kPa and T2 428 K. respectively. Heat lost from the compressor to the surroundings per unit mass flow is 16 kJ/kg. Air can be assumed as an ideal gas. Kinetic and potential energy changes can be neglected. what is the required...

  • 3_4: Air from the surrounding atmosphere at 100 kPa, 20 oC, enters a compressor with a...

    3_4: Air from the surrounding atmosphere at 100 kPa, 20 oC, enters a compressor with a velocity of 8.6 m/s through an inlet whose diameter is 36 cm. The compressed air exits at 650 kPa, 225 oC, with a velocity of 2.8 m/s. The rate of entropy generation for the compressor is 0.062 kW/K. Determine the power input to the compressor, kW.

  • Air enters the compressor of a cold air-standard Brayton cycle with regeneration at 100 kPa, 300...

    Air enters the compressor of a cold air-standard Brayton cycle with regeneration at 100 kPa, 300 K, with a volume flow rate of 5 m3/s. The compressor pressure ratio is 8, and the turbine inlet temperature is 1400 K. The turbine and compressor each have isentropic efficiencies of 80% and the regenerator effectiveness is 80%. For the air, k = 1.4 and the ambient temperature is T0 = 300 K. -Determine the thermal efficiency of the cycle. -determine the back...

  • For air, y- 1.4, cp 1.005 k]/kg K, R- 0.287 kJ/kg K unless stated in question....

    For air, y- 1.4, cp 1.005 k]/kg K, R- 0.287 kJ/kg K unless stated in question. 1. Air flows adiabatically through a duct. At point 1 the velocity is 240m/s, with T1 - 320 K and p1 170 kPa. Compute i. To ii. (Mach number) ii. At point 2 further downstream V2-290 m/s and P2-135 kPa. What is the stagnation pressure Po2 Hints: Given the properties it is easy to solve for the Mach number using the following formulas To/T...

  • 03 4: Air from the surrounding atmosphere at 100 kPa, 20 °C, enters a compressor with...

    03 4: Air from the surrounding atmosphere at 100 kPa, 20 °C, enters a compressor with a velocity of 8.6 m/s through an inlet whose diameter is 36 cm. The compressed air exits at 650 kPa, 225 °C, with a velocity of 2.8 m/s. The rate of entropy generation for the compressor is 0.062 kW/K Determine the power input to the compressor, kW.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT