Question

2. (3 pts) A solid cylindrical wire of radius R carries uniform current density. Use Amperes Law to calculate the magnetic f

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
2. (3 pts) A solid cylindrical wire of radius R carries uniform current density. Use Ampere's...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An infinitely long, straight, cylindrical wire of radius R carries a uniform current density J. Using...

    An infinitely long, straight, cylindrical wire of radius R carries a uniform current density J. Using symmetry and Ampere's law, find the magnitude and direction of the magnetic field at a point inside the wire. For the purposes of this problem, use a cylindrical coordinate system with the current in the +z-direction, as shown coming out of the screen in the top illustration. The radial r-coordinate of each point is the distance to the central axis of the wire, and...

  • A cylindrical non-magnetic wire, radius R, carries a uniform steady current I. Find H inside and...

    A cylindrical non-magnetic wire, radius R, carries a uniform steady current I. Find H inside and outside the wire. If the current is 30 kA, what is the field in T at a distance of 1 m?

  • 12) Ampere’s Law – Infinite Wire: (10 pts) (a) Use Ampere's law to determine the magnetic...

    12) Ampere’s Law – Infinite Wire: (10 pts) (a) Use Ampere's law to determine the magnetic field both inside and outside an infinite cylindrical wire of radius R and length 1 carrying a constant current I. Sketch the relevant Amperian loop each case. 1 R R

  • A long, cylindrical wire of radius R has a current density J(r) = Jo(1 – r2/R2)...

    A long, cylindrical wire of radius R has a current density J(r) = Jo(1 – r2/R2) for distances where r < R and J(r) = 0 for r < R where r is the distance from the center of the wire’s axis. Find the magnetic field strength inside (r < R) and outside (r > R) the wire. Sketch the magnetic field strength as a function of distance r from r = 0 to r = 2R. Find the location...

  • [3] A wire of radius a carries a uniform current density given by which is directed...

    [3] A wire of radius a carries a uniform current density given by which is directed out of the page as shown. The wire carries a total current I. (a) Which direction does the magnetic field circulate around the wire? (circle the correct answer below). (b) Calculate the magnitude of the current density in terms of I and a (c) Showing complete details, including sketches as necessary, calculate the vector magnetic field inside the wire in terms of I, a...

  • 12) Ampere’s Law – Infinite Wire: (10 pts) (a) Use Ampere’s law to determine the magnetic...

    12) Ampere’s Law – Infinite Wire: (10 pts) (a) Use Ampere’s law to determine the magnetic field both inside and outside an infinite cylindrical wire of radius R and length l carrying a constant current I. Sketch the relevant Amperian loop each case. 12) Ampere's Law - Infinite Wire: (10 pts) (a) Use Ampere's law to determine the magnetic field both inside and outside an infinite cylindrical wire of radius R and length / carrying a constant current I. Sketch...

  • The current density inside a long, solid, cylindrical wire of radius a = 4.0 mm is...

    The current density inside a long, solid, cylindrical wire of radius a = 4.0 mm is in the direction of the central axis and its magnitude varies linearly with radial distance r from the axis according to J = J0r/a, where J0 = 390 A/m2. Find the magnitude of the magnetic field at a distance (a) r=0, (b) r = 2.7 mm and (c) r=4.0 mm from the center. Chapter 29, Problem 047 The current density inside a lon ,...

  • The current density inside a long, solid, cylindrical wire of radius a = 2.6 mm is...

    The current density inside a long, solid, cylindrical wire of radius a = 2.6 mm is in the direction of the central axis and its magnitude varies linearly with radial distance r from the axis according to J = J0r/a, where J0 = 410 A/m2. Find the magnitude of the magnetic field at a distance (a) r=0, (b) r = 1.3 mm and (c) r=2.6 mm from the center. Please explain your steps/solution.

  • The current density inside a long, solid, cylindrical wire of radius a = 4.8 mm is...

    The current density inside a long, solid, cylindrical wire of radius a = 4.8 mm is in the direction of the central axis and its magnitude varies linearly with radial distance r from the axis according to J = J0r/a, where J0 = 330 A/m2. Find the magnitude of the magnetic field at a distance (a) r=0, (b) r = 3.2 mm and (c) r=4.8 mm from the center.

  • 7. (4+6=10 pts) State Biot-Savart law and Ampere's law. Now use Ampere's law to answer following:...

    7. (4+6=10 pts) State Biot-Savart law and Ampere's law. Now use Ampere's law to answer following: A long, cylindrical wire (radius = 2.0 cm) carries a current of 40 A that is uniformly distributed (uniform current density) over a cross section of the wire. What is the magnitude of the magnetic field at a point which is 1.5 cm from the axis of the wire?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT