Question

A stable flow of water vapor enters an isentropic nozzle at 40m/s, 440ºC and 7 bar,...

A stable flow of water vapor enters an isentropic nozzle at 40m/s, 440ºC and 7 bar, leaving at 280ºC and 1. 5 bar. Determine nozzle efficiency

0 0
Add a comment Improve this question Transcribed image text
Answer #1

February 2015 Monday Tue Wed Thu Fri Sat Sun MARCH Mon F Wed 1 Fri Sat Sum 9AM - 9AM 12 Given, G-hout Tip): (gooetbars . Nozz

Add a comment
Know the answer?
Add Answer to:
A stable flow of water vapor enters an isentropic nozzle at 40m/s, 440ºC and 7 bar,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Water vapor at 5 MPa, 320 C enters a turbine operating at steady state and expands...

    Water vapor at 5 MPa, 320 C enters a turbine operating at steady state and expands to 0.1 bar. The mass flow rate is 6.52 kg/s, and the isentropic turbine efficiency is 92%. Stray heat and kinetic and potential energy effects are negligible. Determine the power developed by the turbine in kW. ht 6/3 of En Help I S Water vapor at 5 MPa, 320°C enters a turbine operating at steady state and expands to 0.1 bar. The mass flow...

  • Steam enters a well-insulated nozzle at 10 bar and 200ºC. It exits as saturated vapor at...

    Steam enters a well-insulated nozzle at 10 bar and 200ºC. It exits as saturated vapor at 100 kPa. The mass flow rate is 1 kg/s. What is the steady-state exit velocity? What is the outlet cross-sectional area?

  • 1 MPa Isentropic Efficiency of a Compressor Refrigerant-134a enters an adiabatic compressor as a saturated vapor...

    1 MPa Isentropic Efficiency of a Compressor Refrigerant-134a enters an adiabatic compressor as a saturated vapor at 100kPa at a rate of 0.7 m/min and exits at 1-MPa pressure. The isentropic efficiency of the compressor is 87%. R-134a Compressor Isentropic Compressor Work hs-h 100 kPa sat. vapor Actual Compressor Work Determine the refrigerant properties at the inlet and outlet for an isentropic process. Actual 2s entropic procEss Inlet state Determine the actual isentropic enthalpy from the efficiency. (Ans: 289.71 J/kg)...

  • Superheated steam at 20 MPa, 560oC enters the turbine of a vapor power plant. The pressure...

    Superheated steam at 20 MPa, 560oC enters the turbine of a vapor power plant. The pressure at the exit of the turbine is 0.7 bar, and liquid leaves the condenser at 0.4 bar at 75oC. The pressure is increased to 20.1 MPa across the pump and the specific enthalpy is 338.14 kJ/kg. The turbine isentropic efficiency is 81%. Cooling water enters the condenser at 20oC with a mass flow rate of 70.7 kg/s and exits the condenser at 38oC. For...

  • THERMO: QUESTION 5 Saturated water vapor at 12.92 bar enters an insulated throttling valve which drops...

    THERMO: QUESTION 5 Saturated water vapor at 12.92 bar enters an insulated throttling valve which drops the pressure to 1.50 bar. Determine the temperature (oC) of the steam at the exit of the valve. Note: Give your answer to two decimal places. QUESTION 6 Air enters an adiabatic diffuser at 320 K and 100 kPa with a velocity of 665.4 m/s. At the diffuser exit, the temperature is 520 K. Determine the velocity (m/s) at the exit of the diffuser....

  • Water vapor at 6 MPa and 500 °C enters a turbine operating at steady state and...

    Water vapor at 6 MPa and 500 °C enters a turbine operating at steady state and expands to 1 bar. Mass flow rate is 2kg/s. Neglect heat transfer, kinetic energy and potential energy changes. For the actual process (1-2), water leaves the turbine with a specific entropy S2 = 7.1176 kJ / kg / k Find: a) Plot isentropic process in the turbine (1-2s) and the actual process in the turbine (1-2) on a T-s diagram. Justify the location of...

  • Problem 3 (70 points) Water vapor at 10 MPa, 600°C enters a turbine operating at steady...

    Problem 3 (70 points) Water vapor at 10 MPa, 600°C enters a turbine operating at steady state with a mass flow rate of 9.5 kg/s and exits at 0.1 bar and a quality of 92%. Stray heat transfer and kinetic and potential energy effects are negligible. (a) (30 points) Determine the rate of entropy production, Ocv, in kW/K. (b) (40 points) Determine the isentropic turbine efficiency, .

  • Water vapor at 6 MPa and 500 °C enters a turbine operating at steady state and...

    Water vapor at 6 MPa and 500 °C enters a turbine operating at steady state and expands to 1 bar. Mass flow rate is 2kg/s. Neglect heat transfer, kinetic energy and potential energy changes. For the actual process (1-2), water leaves the turbine with a specific entropy S2 = 7.1176 kJ/kg/K. Find: (1) Plot isentropic process in the turbine (1-2s) and the actual process in the turbine (1-2) on a T- s diagram. Justify the location of each point. (20")...

  • Water vapor enters a diffuser at a pressure of 0.7 bar, a temperature of 160°C, and...

    Water vapor enters a diffuser at a pressure of 0.7 bar, a temperature of 160°C, and a velocity of 180 m/s. The inlet to the diffuser is 100 cm The exit conditions from the diffuser are: velocity of 60 m/s and pressure of 1.0 bar. During the passage of the water vapor through the diffuser, there is heat transfer to the surroundings of 0.6 kJ/kg. Determine (a) the final temperature. (b) the mass flow rate in kg/s, and (c) the...

  • 3. Saturated water vapor at 300°F enters a compressor operating at steady state with a mass...

    3. Saturated water vapor at 300°F enters a compressor operating at steady state with a mass flow rate of 5 lb/s and is compressed adiabatically to 800 lbf/in. Ignore kinetic and potential energy effects. If the power input is 2150 hp, determine for the compressor a) The isentropic compressor efficiency b) Rate of entropy production (hp/ R)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT