Question

Problem II. (30 Points) The horizontal nozzle shown in the schematics has D, = 10 in and D2 = 5 in, with inlet pressure pa =

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Problem II. (30 Points) The horizontal nozzle shown in the schematics has D, = 10 in...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The "double nozzle lying in a horizontal plane discharges water (p = 1000 kg/m) into the...

    The "double nozzle lying in a horizontal plane discharges water (p = 1000 kg/m) into the atmosphere at a rate of 0.50 m/s. Jet A is 10 cm in diameter, jet B is 12 cm in diameter, and the pipe is 30 cm in diameter. Assume the water speed in each jet to be the same. Calculate the force component (E. and F.) acting through the flange bolts required to hold the nozzle in place? Jet Water

  • Water enters the horizontal, circular cross-sectional, sudden contraction nozzle sketched in the figure below at section...

    Water enters the horizontal, circular cross-sectional, sudden contraction nozzle sketched in the figure below at section (1) with a uniformly V2 of 20 ft/s and a pressure P1 of 58 psi. The water exits from the nozzle into the atmosphere at section (2) where the uniformly distributed velocity V2 is 80 ft/s. Determine the magnitude of the axial component of the anchoring force required to hold the contraction in place. Assume P2 -Opsi, D, -4 in. Section (2) P2 Section...

  • 4. (10 points] Waterenter the horizontal, circular cross-sectional, sudden-contraction nozzle sketched below at section (1) with...

    4. (10 points] Waterenter the horizontal, circular cross-sectional, sudden-contraction nozzle sketched below at section (1) with a uniformly distributed velocity of 30 ft/s and a pressure of 80 nsi.The water exits from the nozzle into the atmosphere at section (2) where the uniformly distributed velocity is 100 ft/s. Determine the axial component of the anchoring force required to hold the contraction in place. Section (2) P2= 0 psi D1 3 in. Pi 80 psi V1 = 30 ft/s ー-スー. 100...

  • Water is discharged through an elbow nozzle as shown below. PB - Patm ds The exit...

    Water is discharged through an elbow nozzle as shown below. PB - Patm ds The exit velocity VB = 30 ft/s, the inlet diameter da = 0.5 ft, the exit diameter dB = 0.25 ft. For water density, use p = 32.2 lb/ft = 1.94 lb/ft. Assume steady flow. Neglect the weight of the nozzle and the water in the nozzle. The mass flow rate through the nozzle is 2.86 slug/s 11.4 slug/s O 92.0 slug/s 18.8 slug/s Determine the...

  • Water flows through the pipe bend and nozzle arrangement shown in the figure above, which lies...

    Water flows through the pipe bend and nozzle arrangement shown in the figure above, which lies with its axis in the horizontal -y plane. The water issues from the nozzle into the atmosphere as a jet with a velocity VN - 13 m/s and the pressure at Ais PA - 179 kPa Find the moment of the resultant force about a vertical axis through the point X for D = 6 cm diameter, Ly - 30 cm 19 cm and...

  • 3. (20 pts) The curved nozzle shown carries fresh water at 20 °C and is installed...

    3. (20 pts) The curved nozzle shown carries fresh water at 20 °C and is installed vertically (the picture is a side view) with the jet exiting to the atmosphere at an angle of 30-degrees from horizontal The nozzle's weight is 30 N and from the flange connection to the exit it has an internal volume of 0.004 m. Determine the x- and 2- components of the anchoring force needed at the flange connection. V = 2 m/s Flange connection...

  • Water enters the horizontal, circular cross-sectional, sudden contraction nozzle sketched in Fig. P5.42 at section (1)...

    Water enters the horizontal, circular cross-sectional, sudden contraction nozzle sketched in Fig. P5.42 at section (1) with a uniformly distributed velocity of 20 ft/s and a pressure of 67 psi. The water exits from the nozzle into the atmosphere at section (2) where the uniformly distributed velocity is 80 ft/s. Determine the axial component of the anchoring force required to hold the contraction in place (positive if directed to the right, negative otherwise). Fa=_________lb

  • Water at 60 °F flows through the elbow as shown below and is then injected to...

    Water at 60 °F flows through the elbow as shown below and is then injected to the atmosphere through a nozzle (on a horizontal plane). The pipe diameter is Di = 4 in. while the diameter of the exit of the nozzle is D2 = 1 in. At a flow rate of Q = 245 gpm, the gage pressure at the section (1) where the flange locates is Pi = 34 psig. Neglect the weight of the water and elbow,...

  • 8-C) As shown below water is pumped and sprayed through a nozzle into the atmosphere at 20 m/s at...

    8-C) As shown below water is pumped and sprayed through a nozzle into the atmosphere at 20 m/s at an elevation 10 m above the reservoir surface. The mass flow rate is 40 kg/s and the volumetric flow rate is 0.040 m3/s. The large diameter inlet pipe total length is 50 m. The pump effidency is 65%. The longer smaller diameter pipe leaving the pump is 200 m in total length. The pipes have different diameters as indicated below. The...

  • help 2. (10 points) A stream of air (with unknown density p) from a 2 cm...

    help 2. (10 points) A stream of air (with unknown density p) from a 2 cm diameter nozzle strikes a curved vane as shown in the figure. A Pitot tube connected to a water-filled U-tube manometer is placed in the air jet. Calculate the force (horizontal and vertical) exerted in the vane by jet. Assume incompressible and inviscid flow. f Air Open -Stagnation Fixed vane Viet| tube D=2cm dia. LFree air jet 1 1 h=10cm 30° 2 Water V=Vjes

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT