Question

2-26. The motor in a refrigerator has a power output of 200 W. If the freezing compartment is at 270 K and the outside air is
0 0
Add a comment Improve this question Transcribed image text
Answer #1

please upvote ? if you like my answer ?

26 TH300K To27ok t- lo mun To alao W TH-Te क Q Tc THE TH-TO Lro x (1ox60s) W Pt o.tme W= 12 Xto 12xlo x 270 3 ro-270 wok dane

Add a comment
Know the answer?
Add Answer to:
2-26. The motor in a refrigerator has a power output of 200 W. If the freezing...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A monatomic ideal gas is initially at volume, pressure, temperature (Vi, Pi, Ti). Consider two different...

    A monatomic ideal gas is initially at volume, pressure, temperature (Vi, Pi, Ti). Consider two different paths for expansion. Path 1: The gas expands quasistatically and isothermally to (Va, Pz. T2) Path 2: First the gas expands quasistatically and adiabatically (V2, P.,T-),where you will calculate P T. Then the gas is heated quasistically at constant volume to (Va. P2 T1). a. Sketch both paths on a P-V diagram. b. Calculate the entropy change of the system along all three segments...

  • .85-120 Thermodynamics Tutorial 3 Problem 1. An inventor claims to have invented 4 engines, each of...

    .85-120 Thermodynamics Tutorial 3 Problem 1. An inventor claims to have invented 4 engines, each of which operates between constant-temperature reservoirs of 400 and 300 K. Consider the 1st and 2nd laws of thermodynamics to evaluate the engines. For each engine, state and explain why it does or doesn't violate the 1st and 2nd Laws of Thermo. 1st law hint: Think quantity of work. 2nd Law hint: Think process efficiency. Engine 1 2 3 4 QH (J) 200 500 600...

  • Consider a closed system consisting of one mole of a monoatomic ideal gas X initially at...

    Consider a closed system consisting of one mole of a monoatomic ideal gas X initially at 10.0 atm, a temperature of 487.5 K, and a volume of 4.00 L (state A). From state A, the system may expand isothermally and reversibly to state B, where the pressure is 2.50 atm. The system may also expand adiabatically and reversibly to state B, where the pressure is 2.50 atm. The system may also expand adiabatically and reversibly (through an intermediate state D)...

  • 6. The formula dS = dQ/T makes it look like a system can only increase its...

    6. The formula dS = dQ/T makes it look like a system can only increase its entropy by absorbing heat. You must however remember that this equation is only true for reversible processes. Entropy can change for a system without absorbing any heat. Consider the following scenario. You are given an insulated container with two compartments. The whole container is at the temperature T which remains constant. One compartment has a volume V1 and has n1 moles of an ideal...

  • One mole of an ideal mono-atomic gas is in a state A characterized by a temperature...

    One mole of an ideal mono-atomic gas is in a state A characterized by a temperature TA. The gas is then subjected to a succession of three quasi-static reversible processes: An isothermal expansion A → B, which increases the volume by a factor y. The expansion factor is therefore y = VB / VA> 1. An adiabatic compression B → C which increases the pressure by a factor w. The compression factor is w = pC / pB> 1. A...

  • The lesson is about First Law of Thermodynamic. The problems have answers but i need solutions....

    The lesson is about First Law of Thermodynamic. The problems have answers but i need solutions. PLEASE HELP ME! THANK YOU! 38. Calculate the maximum work that could be obtained if 2.00 mol of an ideal gas, initially at STP, is allowed to expand to 100 L isothermally. Answer-36.0 L-atm 39. If 5.00 mol of an ideal gas is heated at constant pressure from 300 K to 500 K, how much work is done by the expansion of the gas?...

  • One mole of H20( is supercooled to-5.00°C at 1 bar pressure before freezing at that temperature....

    One mole of H20( is supercooled to-5.00°C at 1 bar pressure before freezing at that temperature. Calculate ASys, ASum, and ASeotal for this process. Is it spontaneous? CPm (H20, 1)- 75.3 J/mol.K CPm (H20, s)-37.7 J/mol.K AHfusion 6.008 kJ/mol Hint: remember that ASs is computed using q along a reversible path, while ASur is computed using the actual heat transfer during the freezing. For the following equilibrium reaction: Here is an ICE table, starting from no moles of pure 0z...

  • 2 moles of compressed air (diatomic gas) in a cylinder under the initial condition T1=573K p1=500kPa....

    2 moles of compressed air (diatomic gas) in a cylinder under the initial condition T1=573K p1=500kPa. Found v1=0.019m^3 but can not remember then how to find V2. I think that it has something to do with T1=T2 condition then P2 can be found.... but stuck on how to proceed so with FULL written explanations with working would be much appreciated! All question info on practice exam below - note ISOTHERMAL EXPANSION. for part ii which after an explanation first. Two...

  • 1. The Redlich-Kwong equation of state is given by P=_RT___ A _ _ V-RI2,, - 0.0866 - where 4-0.42748RT - B - P (The R-K...

    1. The Redlich-Kwong equation of state is given by P=_RT___ A _ _ V-RI2,, - 0.0866 - where 4-0.42748RT - B - P (The R-K constants can be calculated from the critical temperature and pressure of the gas.) This EOS was introduced in 1949 and is adequate for calculations of gas phase properties when P, </2 T, a) Derive an expression for the work associated with an isothermal reversible volume change of a R-K gas between two volumes V, and...

  • can someone help me with number 17.35 and 17.49? thank you Toe Boyle's law to determine...

    can someone help me with number 17.35 and 17.49? thank you Toe Boyle's law to determine the final - 33 A 220-L cylinder contains 150 atm. If the gas is allowed to opposing pressure of 1.0 atm, how The expansion will stop when the in palision will stop Il equals the external pressure. determine the final volume. nder contains an ideal gas at a pressure of 1f the gas is allowed to expand against a constant pressure of 1.0 atm,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT