Question

One mole of an ideal mono-atomic gas is in a state A characterized by a temperature...

One mole of an ideal mono-atomic gas is in a state A characterized by a temperature TA. The gas is then subjected to a succession of three quasi-static reversible processes:

An isothermal expansion A → B, which increases the volume by a factor y. The expansion factor is therefore y = VB / VA> 1.

An adiabatic compression B → C which increases the pressure by a factor w. The compression factor is w = pC / pB> 1.

A process C → A that returns the gas to its initial state A along a straight line in a diagram (p, V).

a) Make the cycle diagram in a diagram (p, V).

b) Find the work done by the environment on the gas, the heat absorbed (or rejected) by the gas and its change of internal energy for each of the three processes. Express your answers in terms of TA, y and w.

c) Let TA = 273 K, y = 10, w = 100. Find the total work done by the environment during the cycle and the total heat absorbed (or rejected) by the gas. Check that the internal energy does not change in the cycle.

d) Is it a heat engine or a refrigerator? In the first case, find the engine efficiency. If not, find the coefficient of performance of the refrigerator.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
One mole of an ideal mono-atomic gas is in a state A characterized by a temperature...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Ideal Gas Process Problem natomic ideal gas is run through the cycle shown starting in state...

    Ideal Gas Process Problem natomic ideal gas is run through the cycle shown starting in state A. The temperature of the gas in state A 300 K. The cycle happens within a sealed chamber outfitted with a piston as necessary. P (Pa) A 5.00 x 105 + The Herring Cycle 1.00 x 105 + 14300k 2.00 6.00 The cycle is composed of three processes, A B, B C, and C - A. 1) For each individual process... (a) (b) Name...

  • 12. 1 mole of an ideal gas undergoes an isothermal expansion from V1 = 1.4L followed...

    12. 1 mole of an ideal gas undergoes an isothermal expansion from V1 = 1.4L followed by isobaric compression, p = cst.if P1 = 4.4atm, p2 = 1.7atm → ?- m calculate the work done by gas during the expansion. Express work in J = N·m! • For isothermal processes, AT = 0 T = cst → w=faw=fr&v=/MRT AV 594 Show your work like: `x-int_0^5 v(t)dt rarr x-int_0^5(-4*t)dt=-50 m 13. 1 mole of an ideal gas undergoes an isothermal expansion...

  • A Carnot engine operates us ing 1.0 mol e of monoatomic ideal gas as a working...

    A Carnot engine operates us ing 1.0 mol e of monoatomic ideal gas as a working s ubstance. In t he first step, the gas is place d in thermal contact with a heat reservoir and expands isothermally to 3 .0 times its initial volume. (a) If the internal energy o f the gas after this step is 6.25 k J , calculate the temperature of the heat reservoir ( T h ) . (b) C alculate the heat absorbed...

  • A heat engine takes for 0.40 mol of ideal H2 gas around the cycle shown in the pV- diagram.

    A heat engine takes for 0.40 mol of ideal H2 gas around the cycle shown in the pV- diagram.Ta=400KTb=800KTc=592K Process a→b is at constant volume, process b→c is adiabatic, and process c-> a is at constant pressure of 2 atm. The value of y for this gas is 1.40. (a) Find the pressure and volume at points a, b and c (b) Calculate Q, W, and AU for each of the processes. (c) Find the net work done by the gas in the cycle (d)...

  • (17%) Problem 4: A monatomic ideal gas is in a state with volume of Vo at...

    (17%) Problem 4: A monatomic ideal gas is in a state with volume of Vo at pressure Po and temperature T . The following questions refer to the work done on the gas, W- -PA 17% Part (a) The gas undergoes an isochoric cooling from its initial state (I-Po-T0). For this process, choose what happens to the energy heat, and work from the following Grade Summary Deductions Potential 100% 0% Submissions OAU > 0, Δυ-o-w. Q < 0, and w...

  • An ideal gas goes around thecycle shown in the diagram. Write your answers in terms...

    An ideal gas goes around the cycle shown in the diagram. Write your answers in terms of P0 and v0. a) find the work done by the gas and the heat absorbed by the gas in one cycle. b) the internal energy of the gas increases by (3PoVo)/2 going from A to B Find the efficiency

  • Problem 8: Consider the reversible Carnot's cycle of an ideal monatomic gas in the cold cylinder...

    Problem 8: Consider the reversible Carnot's cycle of an ideal monatomic gas in the cold cylinder of 290 K corresponding to the isothermal compression step. Then the volume of the gas is further compressed by a factor of 7.5 in the adiabatic compression step. a) Find the temperature at the final step of the adiabatic compression. b) What is Thot for the isothermal expansion step? c) What is the maximum thermodynamic efficiency for this engine? d) How much would the...

  • The working substance in an engine is 3.0 x 1023 He atoms. Initially in state 1,...

    The working substance in an engine is 3.0 x 1023 He atoms. Initially in state 1, the gas volume is V1=1.5 x 10-3 m3 and the pressure is P1=1.00 x 106 N/m2 . The gas undergoes a cycle that consists of four processes: (1→2) an isothermal expansion, (2→3) an isobaric compression until the volume is V3=2.00 x 10-3 m3 and the pressure is 2.00 x105 N/m2 , (3→4) an isothermal compression until the volume is V4=V1, and (4→1) an isochoric...

  • Assume there's 1 mol ideal mono-atomic gas in a 22.4L container at 300K. The initial entropy...

    Assume there's 1 mol ideal mono-atomic gas in a 22.4L container at 300K. The initial entropy of the system is 100J/K. For the following processes, calculate: a) q and w for a reversible expansion to twice the volume, isothermally. b) S and G for irreversible isothermal expansion against a constant 0.5 bar external pressure, to a final internal pressure of 0.5 bar. c) U and H for adiabatic reversible expansion to twice the volume.

  • One mole of an ideal gas is confined to a container with a movable piston. The...

    One mole of an ideal gas is confined to a container with a movable piston. The questions below refer to the processes shown on the PV diagram at right. Process I is a change from state Xto state Y at constant pressure. Process Il is a change from state W to state Z at a different constant pressure Rank the temperatures of states W, X, Y, and Z. If any temperatures are equal, state that explicitly. Explain. a. b. x...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT