Question

Consider steady-state conditions for one-dimensional conduction

Consider steady-state conditions for one-dimensional conduction in a plane wall having a thermal conductivity k = 50 W/m·K and thickness L = 0.35 m, with no internal heat generation 

image.png

Determine the heat flux and the unknown quantity for each case and sketch the temperature distribution, indicating the direction of the heat flux. 

image.png

0 0
Add a comment Improve this question Transcribed image text
Answer #1

> all q" are wrong

BiohazardBrad Wed, Jan 26, 2022 5:01 PM

> nvm i was wrong lol

BiohazardBrad Wed, Jan 26, 2022 5:09 PM

Add a comment
Know the answer?
Add Answer to:
Consider steady-state conditions for one-dimensional conduction
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A large plane wall has a constant thermal conductivity of 8.5W/(m·K), a surface area of 15...

    A large plane wall has a constant thermal conductivity of 8.5W/(m·K), a surface area of 15 m² and a thickness L=25 cm. The temperature on the leftside of the wall (T0) is constant and measured at 0.0°C. A constant heat flux(푞̇H)of 450.0 W/m² entersthe rightside of the wall.a.Express the differential equation and the boundary conditions(mathematical formulation)for steady one-dimensional heat conduction through the wall.b.Obtain a numerical equationfor the variation of temperature in the wall by solving the differential equation. c.Evaluate the...

  • Two large parallel plates with surface conditions approximating those of a blackbody are maintained at 800°C...

    Two large parallel plates with surface conditions approximating those of a blackbody are maintained at 800°C and 100°C, respectively. Determine the rate of heal transfer by radiation between the plates in Wim and the radiative heat transfer coefficient in W/m K ) 12 Write down the one-dimensional sent heal conduction equation for a plane wall with constant thermal conductivity and heat generation in its simplest form, and indicate what each variable represents 13 Write down the one-dimensional transient heat conduction...

  • Consider two-dimensional, steady-state conduction in a square cross section with prescribed surfa...

    need help with c and d Consider two-dimensional, steady-state conduction in a square cross section with prescribed surface temperatures shown in the figure. 2) 100°C a) Determine the temperatures at nodes 1, 2, 3, and 4 Estimate the midpoint temperature. Reducing the mesh size by a factor of 2, determine the corresponding nodal temperatures. Compare your results with those from the coarser grid. b) 50°C 200°c c) If the body generates heat at a rate of 20,000 W/m determine the...

  • ncat transfer system. Question 3-30 points The steady-state temperature distribution in a one-dimensional wall of 20...

    ncat transfer system. Question 3-30 points The steady-state temperature distribution in a one-dimensional wall of 20 W/m-K and thickness L 20 cm is of the form T(x) Ax Bx +Cx + D, where A 20 Crn, B-l 50°C/㎡, C =-120°C/m, D-200 ℃ Find (i) the heat generation rate per unit thermal conductivity, k

  • A plane wall with thermal conductivity of k, is insulated on one side and is exposed...

    A plane wall with thermal conductivity of k, is insulated on one side and is exposed to ambient air at To and convection coefficient of h, on the other side. A heat source in the 3) wall is generating a uniform heat rate per unit volume of For one-dimensional steady-state conduction in the wall, derive a proper differential equation for the temperature by either using the heat equations or doing the energy balance. Identify proper boundary conditions and find the...

  • 20) Me Steady-state temperature distribution in the s figure. The heat flow is one-dimensional. ibution in...

    20) Me Steady-state temperature distribution in the s figure. The heat flow is one-dimensional. ibution in the sandwich of three materials (A, B, and C) is shown in the aterial B has volumetric heat generation à = 64,000 W/m. Material A has thermal conductivity of 10 W/ m K . Determine: a) The heat flux at the left side: b) The heat flux at the right side: c) The thermal conductivity of Material C: : - W/m2 W/m2 _W/mK T[deg.]...

  • Consider steady one-dimensional conduction in a slab having a thickness of L and a constant thermal...

    Consider steady one-dimensional conduction in a slab having a thickness of L and a constant thermal conductivity of k. The two ends are maintained at temperatures T_0 (at x = 0), and T_L (at x = L). There is a heat source, with strength A(x/L)(1 - x/L) W/cm^3. a) Define a set of dimensionless independent variables (depending on position), and a dimensionless dependent variable. b) Obtain a differential equation in which each term is dimensionless. c) Define an appropriate dimensionless...

  • 19. The temperature distribution in a plane wall will be during steady and one-dimensional heat transfer...

    19. The temperature distribution in a plane wall will be during steady and one-dimensional heat transfer with non-constant wall thermal conductivity. a. Straight line b. Linear c. Non-linear

  • 2. A one dimensional plane wall of thickness L=80 mm experiences uniform thermal energy generation of...

    2. A one dimensional plane wall of thickness L=80 mm experiences uniform thermal energy generation of q = 1000 W/m and is convectively cooled at x=140 mm by an ambient fluid characterized by T=30°C. If the steady state temperature distribution within the wall is T(x)mall-x)+b where a=15°C/m and b=40*C, what is the thermal conductivity of the wall? L=80mm

  • Problem 2: Consider a large plane slab of semi-thickness L = 0.3 m, thermal conductivity k...

    Problem 2: Consider a large plane slab of semi-thickness L = 0.3 m, thermal conductivity k = 2.5 W/m K and surface area A = 20.0 m². Both sides of the slab is maintained at a constant wall temperature of 358°K while it is subjected to a uniform but constant heat flux of 950.0 W/m2 Evaluate the temperature distribution/profile within the wall. Calculate the heat flux and temperature at location x = 0.1m. Problem 3: Consider a 10.0 m long...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT