Question
what is the expression for the velocity of the center of mass of the cylinder as function of h
Problem 10.79 Practice A uniform, solid cylinder with mass M and radius 2R rests on a horizontal tabletop. A string is attach
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Energy loss in potential Energy - Goin in kinetic Mgh = 1/2 mv ² + 1/2 Ip cw² + 1 Is o ² Pate: - (en) Mgh = 1, Mv++ = (2) 3h

Add a comment
Know the answer?
Add Answer to:
what is the expression for the velocity of the center of mass of the cylinder as...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A uniform, solid cylinder with mass 3M and radius 2R rests on a horizontal tabletop. A...

    A uniform, solid cylinder with mass 3M and radius 2R rests on a horizontal tabletop. A string is attached by a yoke to a frictionless axle through the center of the cylinder so that the cylinder can rotate about the axle. The string runs over a disk-shaped pulley with mass M and radius R that is mounted on a frictionless axle through its center. A block of mass M is suspended from the free end of the string (the figure...

  • A uniform, solid cylinder with mass 5 and radius 2*1.8 rests on a horizontal table. A...

    A uniform, solid cylinder with mass 5 and radius 2*1.8 rests on a horizontal table. A string is attached by a yoke to a frictionless axle through the center of the cylinder such that the cylinder can rotate about the axle at the center. The string runs over a disk-shaped pulley with mass 5 and radius 1.8 that is mounted on a frictionless axle through its center. A block of mass 5 is suspended from the free end of the...

  • 2. A uniform, solid cylinder with mass M and radius 2R is on an incline plane with angle of inclination of 6. A str...

    2. A uniform, solid cylinder with mass M and radius 2R is on an incline plane with angle of inclination of 6. A string is attached by a yoke to a frictionless axle through the center of the cylinder so that the cylinder can rotate about the axle. The string runs over a disk-shaped pulley with mass M and radius R that is mounted on a frictionless axle through its center. A block of mass M is suspended from the...

  • A uniform solid cylinder with mass 4M and radius can rotate about the axle. The that...

    A uniform solid cylinder with mass 4M and radius can rotate about the axle. The that is mounted on a frictionless the free end of the 2R rests on a horizontal tabletop. A string s e center of the cylinder so that the cylinder axle through th e string runs over a disk-shaped pulley with mass ess axle through its center. A block of mass M is s rolls without slipping on the tabletop. (-% mr-2 for cylinder/pulley) a) Draw...

  • The uniform cylinder rolls without slipping and point C is the center of the cylinder springs...

    The uniform cylinder rolls without slipping and point C is the center of the cylinder springs to the cylinder. Bar AB moves with point C but bar AB does not rotate as the cylinder rolls. me is the mass of the cylinder r is the radius of the cylinder. Find the system's Bar AB is a yoke that connects the two is the mass of the bar, and AB 2k natural frequency answer: Vmc +m AB A ww C

  • In Fig below the coefficient of the kinetic friction between the incline and the blocks is ux and...

    In Fig below the coefficient of the kinetic friction between the incline and the blocks is ux and the string passes through center of mass of each block. The pulley has , and radius R. The string does not slip on the 12) a mass M. moment ΟΙ inertia 「=- pulley. a) (4 pts) What is the acceleration of the D 2R masses? b) (5 pts) Find the acceleration of the system if both blocks are substituted with cylinders of...

  • Problem: A pulley, consists of a disk of radius R=0.2 m and mass M= 50 kg...

    Problem: A pulley, consists of a disk of radius R=0.2 m and mass M= 50 kg is mounted on a nearly frictionless axle. A string is wrapped lightly around the pulley, and you pull on the string with a constant force, F = 100 N. If the pulley starts from rest, what is the angular speed at a time At = 1 s later? Assume that the string does not slip on the pulley. Note: Moment of inertia of a...

  • A uniform wheel of mass 10.0 kg and radius 0.400 m is mounted rigidly on an axle through its center

    A uniform wheel of mass 10.0 kg and radius 0.400 m is mounted rigidly on an axle through its center (see figure . The radius of the axle is 0.200 m, and the rotational inertia of the wheel-axle combination about its central axis is 0.600 kg·m2. The wheel is initially at rest at the top of a surface that is inclined at angleθ = 43.6o with the horizontal; the axle rests on the surface while the wheel extends into a...

  • An green hoop with mass mh = 2.8 kg and radius Rh = 0.17 m hangs...

    An green hoop with mass mh = 2.8 kg and radius Rh = 0.17 m hangs from a string that goes over a blue solid disk pulley with mass md = 2.4 kg and radius Rd = 0.08 m. The other end of the string is attached to a massless axel through the center of an orange sphere on a flat horizontal surface that rolls without slipping and has mass ms = 3.4 kg and radius Rs= 0.19 m. The...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT