Question

A 1.00 kg block starts from rest at the top of a 20.0m long 30.0 incline....

A 1.00 kg block starts from rest at the top of a 20.0m long 30.0 incline. Its kinetic energy at the bottom of the incline is 98.0 J. How much work is done by friction? The solution should be 0, can you please show me how.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

20 Siの30 10.0 m 30 Work Energy theo γ w)

Add a comment
Know the answer?
Add Answer to:
A 1.00 kg block starts from rest at the top of a 20.0m long 30.0 incline....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 48.00 kg block starts from rest at the top of a 24.0 m long 30.0°...

    A 48.00 kg block starts from rest at the top of a 24.0 m long 30.0° incline. Its kinetic energy at the bottom of the incline is 5644.8 J. How much work is done by friction?

  • A 48.00 kg block starts from rest at the top of a 24.0 m long 30.0°...

    A 48.00 kg block starts from rest at the top of a 24.0 m long 30.0° incline. Its kinetic energy at the bottom of the incline is 5644.8 J. How much work is done by friction?

  • A 2.10-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 2.10-kg block starts from rest at the top of a 30.0° incline and slides a distance of 2.10 m down the incline in 1.00 s. (a) Find the magnitude of the acceleration of the block. m/s2 (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. magnitude N direction ---Select--- up the incline down the incline normal to the incline and upward normal to the incline and downward (d)...

  • A 3.90-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 3.90-kg block starts from rest at the top of a 30.0° incline and slides a distance of 2.10 m down the incline in 2.00 s. (a) Find the magnitude of the acceleration of the block. (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. (d) Find the speed of the block after it has slid 2.10 m.

  • A 3.60-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 3.60-kg block starts from rest at the top of a 30.0° incline and slides a distance of 1.70 m down the incline in 1.40 s. (a) Find the magnitude of the acceleration of the block.m/s2 (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. (d) Find the speed of the block after it has slid 1.70 m.

  • A 3.50-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 3.50-kg block starts from rest at the top of a 30.0° incline and slides a distance of 1.90 m down the incline in 1.80 s (a) Find the magnitude of the acceleration of the block. m/s (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. magnitude direction Select- (d) Find the speed of the block after it has slid 1.90 m m/s Need Help? tMasterTalk to a Tutor...

  • A 3.00-kg block starts from rest at the top of a 30.0 degrees incline and slides...

    A 3.00-kg block starts from rest at the top of a 30.0 degrees incline and slides a distance of 2.10m down the incline in 1.80 seconds. a) Find the magnitude of the acceleration of the block. (_______ m/s2) b) Find the coefficient of kinetic friction between block and plane. c) Find the friction force acting on the block.        Magnitude ____________N        Direction: ______________ d) Find the speed of the block after it has slid 2.10m. (___________m/s)

  • A 3.00kg block starts from rest at the top of a 30.0 degree incline and slides...

    A 3.00kg block starts from rest at the top of a 30.0 degree incline and slides a distance of 2.00m down the incline in 1.50s. Find (a)the magnitude of the acceleration of the block, (b) the coefficient of kinetic friction between block and plane, (c) the friction force acting on the block and (d) the speed of the block after it has slid 2.00m.

  • A 4.00 kg block starts sliding from rest from the top of a frictionless incline, the...

    A 4.00 kg block starts sliding from rest from the top of a frictionless incline, the mass slides along a horizontal surface and collides with a spring compressing it a distance x. The spring will compress 3 meters with an applied force of 300N. A) Calulate the speed of the block at the halfway down the incline. B) Calculate the speed of the block at the bottom of the incline C) How much work is done on the block by...

  • block starts from rest at the top of a 30.0° incline and slides 2.00 m down...

    block starts from rest at the top of a 30.0° incline and slides 2.00 m down the incline in 1.75s. a) Find the acceleration of the block b) Find the speed of the block after it has slid 2.00 m c) Find the frictional force acting on the block d) Find the normal contact force e) Find the coefficient of kinetic friction

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT