Question

A 48.00 kg block starts from rest at the top of a 24.0 m long 30.0°...

A 48.00 kg block starts from rest at the top of a 24.0 m long 30.0° incline. Its kinetic energy at the bottom of the incline is 5644.8 J. How much work is done by friction?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Apply wore energy Therum 48kg 5k world done = change in Ilinche energy -> (489&ingo )x24-tex24 = 564468 489 din 30 4860 247 -

Add a comment
Know the answer?
Add Answer to:
A 48.00 kg block starts from rest at the top of a 24.0 m long 30.0°...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 48.00 kg block starts from rest at the top of a 24.0 m long 30.0°...

    A 48.00 kg block starts from rest at the top of a 24.0 m long 30.0° incline. Its kinetic energy at the bottom of the incline is 5644.8 J. How much work is done by friction?

  • A 1.00 kg block starts from rest at the top of a 20.0m long 30.0 incline....

    A 1.00 kg block starts from rest at the top of a 20.0m long 30.0 incline. Its kinetic energy at the bottom of the incline is 98.0 J. How much work is done by friction? The solution should be 0, can you please show me how.

  • A 3.90-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 3.90-kg block starts from rest at the top of a 30.0° incline and slides a distance of 2.10 m down the incline in 2.00 s. (a) Find the magnitude of the acceleration of the block. (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. (d) Find the speed of the block after it has slid 2.10 m.

  • A 3.60-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 3.60-kg block starts from rest at the top of a 30.0° incline and slides a distance of 1.70 m down the incline in 1.40 s. (a) Find the magnitude of the acceleration of the block.m/s2 (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. (d) Find the speed of the block after it has slid 1.70 m.

  • A 2.10-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 2.10-kg block starts from rest at the top of a 30.0° incline and slides a distance of 2.10 m down the incline in 1.00 s. (a) Find the magnitude of the acceleration of the block. m/s2 (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. magnitude N direction ---Select--- up the incline down the incline normal to the incline and upward normal to the incline and downward (d)...

  • A 3.50-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 3.50-kg block starts from rest at the top of a 30.0° incline and slides a distance of 1.90 m down the incline in 1.80 s (a) Find the magnitude of the acceleration of the block. m/s (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. magnitude direction Select- (d) Find the speed of the block after it has slid 1.90 m m/s Need Help? tMasterTalk to a Tutor...

  • A 3.00-kg block starts from rest at the top of a 30.0 degrees incline and slides...

    A 3.00-kg block starts from rest at the top of a 30.0 degrees incline and slides a distance of 2.10m down the incline in 1.80 seconds. a) Find the magnitude of the acceleration of the block. (_______ m/s2) b) Find the coefficient of kinetic friction between block and plane. c) Find the friction force acting on the block.        Magnitude ____________N        Direction: ______________ d) Find the speed of the block after it has slid 2.10m. (___________m/s)

  • block starts from rest at the top of a 30.0° incline and slides 2.00 m down...

    block starts from rest at the top of a 30.0° incline and slides 2.00 m down the incline in 1.75s. a) Find the acceleration of the block b) Find the speed of the block after it has slid 2.00 m c) Find the frictional force acting on the block d) Find the normal contact force e) Find the coefficient of kinetic friction

  • 3. Starting from rest, a 5.20-kg block slides 1.60 m down a rough 30.0° incline. The...

    3. Starting from rest, a 5.20-kg block slides 1.60 m down a rough 30.0° incline. The coefficient of kinetic friction between the block and the incline is μk = 0.436. (a) Determine the work done by the force of gravity. J (b) Determine the work done by the friction force between block and incline. J (c) Determine the work done by the normal force. J (d) Qualitatively, how would the answers change if a shorter ramp at a steeper angle...

  • A block of mass M = 4.000 kg is released from rest at the top of...

    A block of mass M = 4.000 kg is released from rest at the top of an incline of angle θ = 24.0º w.r.t. the horizontal. The coefficient of kinetic friction between the block and the incline is µk = 0.200 and the length of the incline (hypothenuse of the triangle shown below) is L = 6.00 m. ( w.r.t. = with respect to) I am trying to find: a. The work done by the normal force for the complete...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT