Question

3. Starting from rest, a 5.20-kg block slides 1.60 m down a rough 30.0° incline. The...

3. Starting from rest, a 5.20-kg block slides 1.60 m down a rough 30.0° incline. The coefficient of kinetic friction between the block and the incline is

μk = 0.436.

(a) Determine the work done by the force of gravity. J

(b) Determine the work done by the friction force between block and incline. J

(c) Determine the work done by the normal force. J

(d) Qualitatively, how would the answers change if a shorter ramp at a steeper angle were used to span the same vertical height?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
3. Starting from rest, a 5.20-kg block slides 1.60 m down a rough 30.0° incline. The...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 12. |-/3 POINTS MY NOTES ASK YOUR TEACHER Starting from rest, a 4.90-kg block slides 3.00...

    12. |-/3 POINTS MY NOTES ASK YOUR TEACHER Starting from rest, a 4.90-kg block slides 3.00 m down a rough 30.0° incline. The coefficient of kinetic friction between the block and the incline is Mx = 0.436. (a) Determine the work done by the force of gravity. נר (b) Determine the work done by the friction force between block and incline. CJ (c) Determine the work done by the normal force. CJ Show My Work (Optional)

  • A 50 kg block of ice slides down an incline 2 m long and 1 m...

    A 50 kg block of ice slides down an incline 2 m long and 1 m high. A worker pushes up on the ice parallel to the incline so that it slides down at constant speed. The coefficient of kinetic friction between the ice and the incline is 0.1. Find (a) the force exerted by the worker, (b) the work done by the worker on the block of ice, and (c) the work done by gravity on the ice.

  • block starts from rest at the top of a 30.0° incline and slides 2.00 m down...

    block starts from rest at the top of a 30.0° incline and slides 2.00 m down the incline in 1.75s. a) Find the acceleration of the block b) Find the speed of the block after it has slid 2.00 m c) Find the frictional force acting on the block d) Find the normal contact force e) Find the coefficient of kinetic friction

  • A 3.90-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 3.90-kg block starts from rest at the top of a 30.0° incline and slides a distance of 2.10 m down the incline in 2.00 s. (a) Find the magnitude of the acceleration of the block. (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. (d) Find the speed of the block after it has slid 2.10 m.

  • A 3.60-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 3.60-kg block starts from rest at the top of a 30.0° incline and slides a distance of 1.70 m down the incline in 1.40 s. (a) Find the magnitude of the acceleration of the block.m/s2 (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. (d) Find the speed of the block after it has slid 1.70 m.

  • An object of mass 8.00 kg starts from rest and a slides 2.00 m down a...

    An object of mass 8.00 kg starts from rest and a slides 2.00 m down a rough 35.0° incline. The coefficient of kinetic friction between the block and the incline is 0.366. Determine (b) the work done by the friction force between block and incline (This part (b) of the previous question) 0 -47.00 0 -23.5) 0 -38.6) O-46.3)

  • A 2.10-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 2.10-kg block starts from rest at the top of a 30.0° incline and slides a distance of 2.10 m down the incline in 1.00 s. (a) Find the magnitude of the acceleration of the block. m/s2 (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. magnitude N direction ---Select--- up the incline down the incline normal to the incline and upward normal to the incline and downward (d)...

  • A block (6 kg) starts from rest and slides down a frictionless ramp #1 of height...

    A block (6 kg) starts from rest and slides down a frictionless ramp #1 of height 6 m. The block then slides a horizontal distance of 1 m on a rough surface with kinetic coefficient of friction μk = 0.5. Next, it slides back up another frictionless ramp #2. Find the following numerical energy values: 1.Initial gravitational potential energy on Ramp #1: U1G = J 2.Kinetic energy at bottom of Ramp #1 before traveling across the rough surface: K =...

  • A 20.0 kg box slides 1.60 m down a rooftop with a 30.0° incline and a...

    A 20.0 kg box slides 1.60 m down a rooftop with a 30.0° incline and a coefficient of kinetic friction of 0.342. It then falls off the rooftop and hits the ground. Assume no air resistance. The bottom of the rooftop is 2.78 m above ground. a) What are the components of the weight, using axes parallel and perpendicular to the rooftop? b) Write the normal force and the force of friction in component form c) Calculate the acceleration of...

  • A 3.50-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 3.50-kg block starts from rest at the top of a 30.0° incline and slides a distance of 1.90 m down the incline in 1.80 s (a) Find the magnitude of the acceleration of the block. m/s (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. magnitude direction Select- (d) Find the speed of the block after it has slid 1.90 m m/s Need Help? tMasterTalk to a Tutor...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT