Question

A 15-ft solid concrete cantilever beam with a rectangular cross-section is shown below. It supports a load w = 2,150 lb/ft. T
0 0
Add a comment Improve this question Transcribed image text
Answer #1

W=2150 lbfE ܝܠ ܝܐ ܝܠ ܀ 4 12 in K sin marimum moment due to vol in generated at the support and the bending is given by 쓸 feelone optron rs psourcing arttı Ironal enforcement will certainly help Try serducing the stresses There may be a possibairty th

Add a comment
Know the answer?
Add Answer to:
A 15-ft solid concrete cantilever beam with a rectangular cross-section is shown below. It supports a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A rectangular reinforced concrete beam of span 16 ft supports a concentrated load of 40 kips...

    A rectangular reinforced concrete beam of span 16 ft supports a concentrated load of 40 kips at mid-point of the beam and a uniformly-distributed load of 4 kips/ft over the entire span. Given: (a) The breadth of the beam is 18 inches. (b) Concrete compressive strength, fc, is 3500 psi. (c) Rebar is Grade 40 steel i) Determine the maximum moment and maximum shear acting on the beam. ii) Determine the minimum effective depth 'd' of the beam section (rounded...

  • A rectangular reinforced concrete beam of span 16 ft supports a concentrated load of 40 kips...

    A rectangular reinforced concrete beam of span 16 ft supports a concentrated load of 40 kips at mid-point of the beam and a uniformly-distributed load of 4 kips/ft over the entire span. Given: (a) The breadth of the beam is 18 inches. (b) Concrete compressive strength, f 'c, is 3500 psi. (c) Rebar is Grade 40 steel i) Determine the maximum moment and maximum shear acting on the beam. ii) Determine the minimum effective depth 'd' of the beam section...

  • A rectangular steel-reinforced concrete beam supports a uniformly distributed load of 875 lb/ft (including the beam...

    A rectangular steel-reinforced concrete beam supports a uniformly distributed load of 875 lb/ft (including the beam weight) for a span of 24 ft. The breadth of the beam is 12 in. Concrete with a specified compressive of 3000 lb/sqin and grade 60 steel for tensile and web reinforcement are specified. Four longitudinal tensile bars are to be used. If required, No. 3 stirrups will be used. Determine the minimum effective depth of the beam section (Round to the nearest inch...

  • 27.2 Much as in Exercise 27.1, a rectangular steel-reinforced concrete beam supports a uni- formly distributed...

    27.2 Much as in Exercise 27.1, a rectangular steel-reinforced concrete beam supports a uni- formly distributed load of 4.5 kip/ft (including the beam weight) for a span of 28 ft. The breadth (b) of the beam is 16 in. The effective depth (d) of the beam section was rounded a compressive strength (f) of 4000 Ib/in2 and grade 60 steel for tensile and web reinforcement are specified. Six longitudinal tensile bars are to be used. Specify the gange number of...

  • Concrete beam with a rectangular cross section has Je 2 60,000 psi, and sustains MDL 36 kip-ft an...

    concrete beam with a rectangular cross section has Je 2 60,000 psi, and sustains MDL 36 kip-ft and MLL -65 kip beam dimensions and reinforcement for a balanced section. 4. A f'4000 psi and f,- SI -ft. Select the concrete beam with a rectangular cross section has Je 2 60,000 psi, and sustains MDL 36 kip-ft and MLL -65 kip beam dimensions and reinforcement for a balanced section. 4. A f'4000 psi and f,- SI -ft. Select the

  • A cantilever cast-iron beam is 6 ft long and has a “T” cross section, as shown....

    A cantilever cast-iron beam is 6 ft long and has a “T” cross section, as shown. Calculate the maximum tensile and compressive bending stresses. The applied load is 450 lb. Neglect the weight of the beam. Show the diagram of both (Tensile and Bending stresses at the section area). 450 lb 60" (a) Load diagram (b) Section A-A

  • 10. A beam cross-section is limited to the size shown below. Determine the required area of...

    10. A beam cross-section is limited to the size shown below. Determine the required area of reinforcement for service load moments Mp-430 ft-kip and M 175 ft-ki ksi. Note that the beam self weight is already included in the dead load moment. Assume that c 0.6c for the singly-reinforced part of the section (for your initial guess). Hint: first calculate the nominal moment resisted by the concrete section without compression steel. Check the strength only p.f -4,000 psi and f,-60...

  • Problem 3 (5 points) A rectangular concrete beam of width b 24 in. is limited by architectural co...

    Problem 3 (5 points) A rectangular concrete beam of width b 24 in. is limited by architectural considerations to a maximum total depth h - 17 in. It must carry a design moment demand, M 400 kips-ft. Design the flexural reinforcement for this member. Use compression steel if needed. The concrete material has compressive strength of fe- 4 ksi. The steel conforms to ASTM A615 Gr. 60. Select reinforcement to provide the needed areas and show a sketch of your...

  • Figure 2 shows a simply supported beam and the cross section at mid span. The beam...

    Figure 2 shows a simply supported beam and the cross section at mid span. The beam supports a uniform service (unfactored) dead load consisting of its own weight plus 1.4 kips/ft and a uniform service (unfactored) live load of 1.5 kips/ft. The concrete strength is 3500 psi, and the yield strength of the reinforcement is 60,000 psi. The concrete is normal-weight concrete. For the midspan section shown in Figure 2, compute фМп and show that it exceeds Mu. WD 1.4...

  • Problem 2. A concrete beam is reinforced by three steel rebars placed as shown. The modulus...

    Problem 2. A concrete beam is reinforced by three steel rebars placed as shown. The modulus of elasticity is 3x106 psi for concrete and 29x106 psi for steel. Find the tensile stress in rebars and maximum compressive stress in concrete under an external bending moment of (a) 80 kip.in and (b) 240 kip.in. Given the compressive strength of concrete fe' = 3 ksi and yield stress of rebars fy = 60 ksi, discuss the state of crack in concrete and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT