Question


concrete beam with a rectangular cross section has Je 2 60,000 psi, and sustains MDL 36 kip-ft and MLL -65 kip beam dimension
0 0
Add a comment Improve this question Transcribed image text
Answer #1

66 20 87 n balnel setin

Add a comment
Know the answer?
Add Answer to:
Concrete beam with a rectangular cross section has Je 2 60,000 psi, and sustains MDL 36 kip-ft an...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 15-ft solid concrete cantilever beam with a rectangular cross-section is shown below. It supports a...

    A 15-ft solid concrete cantilever beam with a rectangular cross-section is shown below. It supports a load w = 2,150 lb/ft. The concrete has a tensile strength of 650 psi and a compressive strength of 6,000 psi. (a) Determine the maximum tensile and compressive stresses in the beam due to the applied load (b) Explain where failure would initiate in the solid concrete beam under the applied load. (c) Because the solid concrete beam is not adequate to carry the...

  • . Deisgn a reinforced concrete cross-section with unknown dimensions Problem 1 Design the steel reinforcement for...

    . Deisgn a reinforced concrete cross-section with unknown dimensions Problem 1 Design the steel reinforcement for the beam shown in Figure 1 that supports its own self-weight, a uninformly distributed dead load, a uniformly distributed live load, and a live point load located at midspan. In your solution, you should select the area of reinforcement, the number and size of reinforcing bars, and the section depth in order to receive full credit. Assume J 5,000 psi, fy 60,000 psi. 16...

  • 2. A beam with the following cross section has to be designed to resist factored positive...

    2. A beam with the following cross section has to be designed to resist factored positive moment demand, Mu, equal to 1500 kip-in. Due to architectural reasons, the dimensions of the section are pre-defined as below. Also, only #8 and #9 bars can be used as longitudinal reinforcement and #4 bars as transverse reinforcement. The specified cover is 2". The compressive strength of the concrete is 4000 psi and grade 60 is used for the steel bars. The cross section...

  • Clear handwriting is needed 10. Select the reinforcing steel for the rectangular cross-section shown. Mu- 160 k-ft....

    Clear handwriting is needed 10. Select the reinforcing steel for the rectangular cross-section shown. Mu- 160 k-ft. Use a concrete strength of 3,000 psi and grade 60 reinforcement. Note beam dimensions are given. Only A, need be determined. (10 pts) 24 in 21 in As 3i 3 in 10 in 3 in 16 in

  • 27.2 Much as in Exercise 27.1, a rectangular steel-reinforced concrete beam supports a uni- formly distributed...

    27.2 Much as in Exercise 27.1, a rectangular steel-reinforced concrete beam supports a uni- formly distributed load of 4.5 kip/ft (including the beam weight) for a span of 28 ft. The breadth (b) of the beam is 16 in. The effective depth (d) of the beam section was rounded a compressive strength (f) of 4000 Ib/in2 and grade 60 steel for tensile and web reinforcement are specified. Six longitudinal tensile bars are to be used. Specify the gange number of...

  • Concrete design Problem #1: Design a rectangular beam section, i.e. select b, d, h, and the...

    Concrete design Problem #1: Design a rectangular beam section, i.e. select b, d, h, and the required area of tension steel, A, at mid-span for a 22 ft-span simply supported beam that support its own weight, a superimposed service dead load of 1.25 kip/ft, and a uniform service live load of 2 kip/ft. Start by assuming the self-weight of the beam W-410 lbs/ft, b-0.7d, and use fc4500 psi and fy-60, 000 psi Note: Provide a detailed sketch for the final...

  • A rectangular reinforced concrete beam of span 16 ft supports a concentrated load of 40 kips...

    A rectangular reinforced concrete beam of span 16 ft supports a concentrated load of 40 kips at mid-point of the beam and a uniformly-distributed load of 4 kips/ft over the entire span. Given: (a) The breadth of the beam is 18 inches. (b) Concrete compressive strength, f 'c, is 3500 psi. (c) Rebar is Grade 40 steel i) Determine the maximum moment and maximum shear acting on the beam. ii) Determine the minimum effective depth 'd' of the beam section...

  • Figure 2 shows a simply supported beam and the cross section at mid span. The beam...

    Figure 2 shows a simply supported beam and the cross section at mid span. The beam supports a uniform service (unfactored) dead load consisting of its own weight plus 1.4 kips/ft and a uniform service (unfactored) live load of 1.5 kips/ft. The concrete strength is 3500 psi, and the yield strength of the reinforcement is 60,000 psi. The concrete is normal-weight concrete. For the midspan section shown in Figure 2, compute фМп and show that it exceeds Mu. WD 1.4...

  • A rectangular reinforced concrete beam of span 16 ft supports a concentrated load of 40 kips...

    A rectangular reinforced concrete beam of span 16 ft supports a concentrated load of 40 kips at mid-point of the beam and a uniformly-distributed load of 4 kips/ft over the entire span. Given: (a) The breadth of the beam is 18 inches. (b) Concrete compressive strength, fc, is 3500 psi. (c) Rebar is Grade 40 steel i) Determine the maximum moment and maximum shear acting on the beam. ii) Determine the minimum effective depth 'd' of the beam section (rounded...

  • 10. A beam cross-section is limited to the size shown below. Determine the required area of...

    10. A beam cross-section is limited to the size shown below. Determine the required area of reinforcement for service load moments Mp-430 ft-kip and M 175 ft-ki ksi. Note that the beam self weight is already included in the dead load moment. Assume that c 0.6c for the singly-reinforced part of the section (for your initial guess). Hint: first calculate the nominal moment resisted by the concrete section without compression steel. Check the strength only p.f -4,000 psi and f,-60...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT