Question
Concrete design
Problem #1: Design a rectangular beam section, i.e. select b, d, h, and the required area of tension steel, A, at mid-span for a 22 ft-span simply supported beam that support its own weight, a superimposed service dead load of 1.25 kip/ft, and a uniform service live load of 2 kip/ft. Start by assuming the self-weight of the beam W-410 lbs/ft, b-0.7d, and use fc4500 psi and fy-60, 000 psi Note: Provide a detailed sketch for the final section with strain and force diagrams
0 0
Add a comment Improve this question Transcribed image text
Answer #1

204718 トP, LM 丁

Add a comment
Know the answer?
Add Answer to:
Concrete design Problem #1: Design a rectangular beam section, i.e. select b, d, h, and the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • . Deisgn a reinforced concrete cross-section with unknown dimensions Problem 1 Design the steel reinforcement for...

    . Deisgn a reinforced concrete cross-section with unknown dimensions Problem 1 Design the steel reinforcement for the beam shown in Figure 1 that supports its own self-weight, a uninformly distributed dead load, a uniformly distributed live load, and a live point load located at midspan. In your solution, you should select the area of reinforcement, the number and size of reinforcing bars, and the section depth in order to receive full credit. Assume J 5,000 psi, fy 60,000 psi. 16...

  • design the following rectangular floor beam for a building. The beam has a simple span of...

    design the following rectangular floor beam for a building. The beam has a simple span of 21ft. The uniform service load is 520lbs/ft live load. Consider the self-weight of the beam as dead load. Assume f’c = 4,000 psi, fy = 60,000 psi, and #3 stirrups. Required: a) Conduct a free-beam design for the above conditions.

  • Design a rectangular simple supported beam to carry service loads of 1.05 kips/ft of dead load...

    Design a rectangular simple supported beam to carry service loads of 1.05 kips/ft of dead load (DL) (self-weight included) and 2.47kip/ft live load (LL) on a span length of 18 ft. The beam is limited to be (due to architectural reasons) 10” wide with an overall depth of 20”. Use f’c= 3,000 psi and fy= 40,000psi. Design the longitudinal reinforcement (flexure design) and the web reinforcement (Stirrups).

  • Design a rectangular simple supported beam to carry service loads of 1.05 kips/ft of dead load...

    Design a rectangular simple supported beam to carry service loads of 1.05 kips/ft of dead load (DL) (self-weight included) and 2.47kip/ft live load (LL) on a span length of 18 ft. The beam is limited to be (due to architectural reasons) 10” wide with an overall depth of 20”. Use f’c= 3,000 psi and fy=40,000psi. Design the longitudinal reinforcement (flexure design) and the web reinforcement (Stirrups).

  • A rectangular beam having b=16 in and d=26 in spans 28 ft face to face of...

    A rectangular beam having b=16 in and d=26 in spans 28 ft face to face of simple supports. It is reinforced for flexure with 6#11 bars that continue uninterrupted to the ends of the span. It is to carry service dead load 2.0 kips/ft (including self weight) and service live load 3.6 kips/ft, both uniformly distributed along the span. Design the shear reinforcement using vertical U stirrups. Economize the spacing of stirrups in appropriate number of bands. Material strengths are...

  • Figure 2 shows a simply supported beam and the cross section at mid span. The beam...

    Figure 2 shows a simply supported beam and the cross section at mid span. The beam supports a uniform service (unfactored) dead load consisting of its own weight plus 1.4 kips/ft and a uniform service (unfactored) live load of 1.5 kips/ft. The concrete strength is 3500 psi, and the yield strength of the reinforcement is 60,000 psi. The concrete is normal-weight concrete. For the midspan section shown in Figure 2, compute фМп and show that it exceeds Mu. WD 1.4...

  • Name: Date: Part II: Numerical responses 1. (+35) Design a rectangular reinforced concrete beam (tension steel...

    Name: Date: Part II: Numerical responses 1. (+35) Design a rectangular reinforced concrete beam (tension steel only) for a simply span of 30 ft. Uniform service loads are 2 kips/ft dead load (included the beam weight) and 3.0 kips/ft live load. The beam is to be not exceed 16 inch wide due to column size. Use fe'=4000psi and fy 60000psi. Sketch your design and calculate Mn for the beam you design. Note: this is an open-end design for you to...

  • COURSE CE 3202 - Design of Concrete Structures SUBJECT HOMEWORK 4 DATE LECTURE # HW 4-2...

    COURSE CE 3202 - Design of Concrete Structures SUBJECT HOMEWORK 4 DATE LECTURE # HW 4-2 A simply supported beam with the cross section shown in Fig. P9-5 has a span of 25 ft and supports an unfactored dead load of 1.5 kips/ft, including its own self-weight plus an unfactored live load of 1.5 kips/ft. The concrete strength is 4500 psi. Compute (a) the immediate dead load deflection. (b) the immediate dead-plus-live-load deflection. 16 No. 8 bars Fig. P9-5

  • A simply supported beam as shown in the figure. The beam section is W18x211. The beam...

    A simply supported beam as shown in the figure. The beam section is W18x211. The beam must support its own weight and must carry the following loading: Super-imposed distributed dead load = 0.25 kip/ft Distributed live load = 1 kip/ft Concentrated dead load = 12 kip The beam span L = 26 ft and the distance of the concentrated load from the right support a=6 ft. Consider analy- sis of beam subjected to load combination 1.2 dead + 1.6 live....

  • A rectangular beam having b-10 in. and d= 17.5 in. spans 15 ft face to face...

    A rectangular beam having b-10 in. and d= 17.5 in. spans 15 ft face to face of simple supports. It is reinforced for flexure with three No. 9 (No. 29) bars that continue uninterrupted to the ends of the span. It is to carry service dead load D 1.27 kips/ft (including self-weight) and service live load L -3.70 kips/ft, both uniformly distributed along the span. Design the shear reinforcement, using No. 3 (No. 10) vertical U stirrups. The more approximate...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT