Question
please matlab code result is important
5. Consider a system with a cascade connection of two causal LTI systems: • Frequency response of the first system is H, (e)
0 0
Add a comment Improve this question Transcribed image text
Answer #1

5 Given; Hilelw= 2 st lion] = 5(+) ur] HilelW) = 2 gin an] (1-2 eiw wing H(Z) = H, (z) Hz(2) [z=ew] o, o Or, H(Z) = 10 or Y(en Or, (z)- 2 x W(7) = 2Xlz) Abbly Invesse 7-transtoom on equi) a). 2) Win-2 win-i] = 2x10] Ans This is oled beet whor]. the5. (d) Plot the output y[n]for N= 21 using Matlab code: From Equation (B); y[n]-(11/12)y[n-1]+(1/6)y[n-2)=10x[n] where, x[n]=Results: 10 11.6666666666667 3.32666216563786 0.665649245838285 0.131537321057331 0.0259829493633754 9.65277777777778 2.23486

Add a comment
Know the answer?
Add Answer to:
please matlab code result is important 5. Consider a system with a cascade connection of two...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • PROBLEM 7.3*: The diagram in Fig. 2 depicts a cascade connection of two linear time-invariant (LTI)...

    PROBLEM 7.3*: The diagram in Fig. 2 depicts a cascade connection of two linear time-invariant (LTI) systems; i.e., the output of the first system is the input to the second system, and the overall output is the output of the second system. [n] yi[n] y[n] LTI System #1 hin] LTI System #2 h2[1] Figure 2: Cascade connection of two LTI systems. (a) Suppose that System #1 is a "blurring" filter described by the following equation y1 [n] =arn-k] k=0 and...

  • Problem 3) Two discrete-time LTI systems are connected in cascade. The first system is defined by...

    Problem 3) Two discrete-time LTI systems are connected in cascade. The first system is defined by its frequency response: H(e-1+and the second system is (a) Determine the frequency response for the overall cascade system. Simplify your (c) Write down the difference equation that relates the output y[n] to the input x[n]. defined by its impulse response: hln]-n-n-+n-2]-n-3] answer as far as possible. (b) Determine and plot the impulse response h[n] for the overall cascade system.

  • The diagram in Fig. 1 depicts a cascade connection of two linear time-invariant systems; i.e., the...

    The diagram in Fig. 1 depicts a cascade connection of two linear time-invariant systems; i.e., the output of the first system is the input to the second system, and the overall output is the output of the second system. LTI System #1 hi[n] LTI System #2 h21n] r[n] iIn] yInl Figure 1: Cascade connection of two LTI systems (a) Suppose that System #l is a blurring filter described by the impulse response 0 "=0.1.2.3.4.5 n>5 and System #2 is described...

  • Consider a causal LTI system whose input xn] and output y[n] are related by the differenoe equati...

    Consider a causal LTI system whose input xn] and output y[n] are related by the differenoe equation yn In--n] a. Find the impulse response of the system (without using any transform). (5 marks) b. Using convolution determine yin, 1f XIn = 1 un.(6 marks Consider a causal LTI system whose input xn] and output y[n] are related by the differenoe equation yn In--n] a. Find the impulse response of the system (without using any transform). (5 marks) b. Using convolution...

  • Problem 3. Discovering the System from the Output. 25 points. x[n] yln] Figure 2: A cascade...

    Problem 3. Discovering the System from the Output. 25 points. x[n] yln] Figure 2: A cascade of two LTI systems. yIn] 2 2 -6-5-4-3 4 5 6 7 Figure 3: The system output y[n] (a) 20 points. Consider the system in Figure 2 which is a cascade of two LTI systems, with hn n]26[n 1]. For input signal [n]-6[n] 1+n -1], the output y[n] appears in Figure 3. Determine the impulse response h2[n].

  • (2) Consider the causal discrete-time LTI system with an input r (n) and an output y(n)...

    (2) Consider the causal discrete-time LTI system with an input r (n) and an output y(n) as shown in Figure 1, where K 6 (constant), system #1 is described by its impulse response: h(n) = -36(n) + 0.48(n- 1)+8.26(n-2), and system # 2 has the difference equation given by: y(n)+0.1y(n-1)+0.3y(n-2)- 2a(n). (a) Determine the corresponding difference equation of the system #1. Hence, write its fre- quency response. (b) Find the frequency response of system #2. 1 system #1 system #2...

  • A causal and stable LTI system has the property that: 〖(4/5)〗^n u(n) →n 〖(4/5)〗^n u(n) Determine...

    A causal and stable LTI system has the property that: 〖(4/5)〗^n u(n) →n 〖(4/5)〗^n u(n) Determine the frequency response H(e^jω) for the system. Determine a difference equation relating any input x(n) and the corresponding output y(n). Question 3:[4 Marks] A causal and stable LTI system has the property that: 4 4 a) Determine the frequency response H(e/ø) for the system. b) Determine a difference equation relating any input x(n) and the corresponding output y(n)

  • 3. Consider the following system LTI LTI System 2 h2ln] System 1 x [n] hiln) wIn]...

    3. Consider the following system LTI LTI System 2 h2ln] System 1 x [n] hiln) wIn] yIn] with h(n) (0.2)" un),h(n) is the impulse response of 2y(n)-4y(n-1) 2w(n), and x(n) (0.6"u(n). (a) Determine h2(n) (b) Determine the overall impulse response hn) (c) Determine w(n) e Demine e gu x n ) (a) velw mine hrCn) (b) Peke a jin

  • Consider the cascade of LTI discrete-time systems shown in Figure P2.37. LTI System 1 hi[n], H...

    Consider the cascade of LTI discrete-time systems shown in Figure P2.37. LTI System 1 hi[n], H (el) LTI System 2 h2[n], H2(eje) Figure P2.37 The first system is described by the frequency response Hi(j =c-joo < 0.25% 11 0.25% < and the second system is described by <A hain) = 2 Sin(0.57) (a) Determine an equation that defines the frequency response, H(e)®), of the overall system over the range -- SUSA. (b) Sketch the magnitude. He"), and the phase, ZH(e)),...

  • CONVOLUTION - Questions 4 and 5 4. Consider an LTI system with an impulse response h(n)...

    CONVOLUTION - Questions 4 and 5 4. Consider an LTI system with an impulse response h(n) = [1 2 1] for 0 <n<2. If the input to the system is x(n) = u(n)-un-2) where u(n) is the unit-step, calculate the output of the system y(n) analytically. Check your answer using the "conv" function in MATLAB. 5. Consider an LTI system with an impulse response h(n) = u(n) where u(n) is the unit-step. (a) If the input to the system is...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT