Question

a) A 1-2 heat exchanger heats 2.52 kg/s of water from 21.1 to 54.4C by using hot water under pressure entering at 115.6C and

0 0
Add a comment Improve this question Transcribed image text
Answer #1

cold fluid hot fluid mic 2.52 12 kg/7 Thi= 115.6°C Tcia 21.1°C Tco a 54.4°C The = 49°C Opc 4.185 × 103 T kgoc for water U= 11

Add a comment
Know the answer?
Add Answer to:
a) A 1-2 heat exchanger heats 2.52 kg/s of water from 21.1 to 54.4C by using...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question 3 A counter flow single pass double pipe heat exchanger is supplied with hot water...

    Question 3 A counter flow single pass double pipe heat exchanger is supplied with hot water at 120°C that is to be cooled by water entering at 20°C. The mass flow rate of the hot stream is 5 kg/s, and that of the cold stream is 6 kg/s. The specific heat capacity of both fluids may be taken as 4180 J/kg.K. The overall U value is 1500W/m2.K, and the surface area for heat transfer is 20 m2 a) Determine the...

  • Hot water flows thorough a parallel flow heat exchanger at a rate of 10 kg/min and...

    Hot water flows thorough a parallel flow heat exchanger at a rate of 10 kg/min and is cooled by a cold water stream of flow rate 25 kg/min. The inlet temperatures of hot and cold water streams are 70 oC and 25 oC, respectively. The outlet temperature of the hot water is expected to be 50 oC. The individual convective heat transfer coefficient on both sides of the heat transfer area is 600 W/m2 .K. Take the specific heat for...

  • 2. (35P) Ashell-and-tube heat exchanger with 1-shell pass and 20-tube passes is used to heat glycerin...

    2. (35P) Ashell-and-tube heat exchanger with 1-shell pass and 20-tube passes is used to heat glycerin (Cp = 2480 J/kg) in the shell, with hot water in the tubes. The tubes are thinwalled and have a diameter of 1.5 cm and length of 2 m per pass. The hot water (Cp=4180 J/kg Centers the tubes at 102°C at a rate of 9 kg/s and leaves at 55°C. Overall heat transfer coefficient U=13900 W/m2C. The glycerin enters the shell at 15°C...

  • 1) 2.5 m/s of air at 150°C is used to heat 0.35 kg/s of 20°C water....

    1) 2.5 m/s of air at 150°C is used to heat 0.35 kg/s of 20°C water. The heat exchanger is a finned-tube cross flow heat exchanger with both sides unmixed. The overall heat transfer coefficient associated with the hot side is 120 W/(m2 °C). The hot-side area is 20 m². Assume a constant specific heat for air and water of Gezic = 1.005 kJ/(kg °C), Senator = 4.2 kJ/(kg °C). The pressure of the hot air is P = 1.0...

  • 1) 2.5 m3/s of air at 150°C is used to heat 0.342 kg/s of 20°C water....

    1) 2.5 m3/s of air at 150°C is used to heat 0.342 kg/s of 20°C water. The heat exchanger is a finned-tube cross flow heat exchanger with both sides unmixed. The overall heat transfer coefficient associated with the hot side is 120 W/(m2°C). The hot-side area is 20 m2. Assume a constant specific heat for air and water of Crezia = 1.005 kJ/(kgº), Crewater = 4.2 kJ/(kg °C). The pressure of the hot air is P = 1.0 atm. The...

  • 2) Hot air enters a heat exchanger at 350°C and exits at 153°C. The heat extracted...

    2) Hot air enters a heat exchanger at 350°C and exits at 153°C. The heat extracted is used to boil 0.277 kg/s of 100°C water (from saturated liquid to saturated steam). The heat exchanger is a single-shell shell-and-tube heat exchanger with two tube passes. The overall heat transfer coefficient for the hot side is 240 W/(m2). Assume a constant specific heat for air of cp = 1.005 kJ/(kg°C). The pressure of the hot air and the boiling water is P...

  • 2) Hot air enters a heat exchanger at 350°C and exits at 155°C. The heat extracted...

    2) Hot air enters a heat exchanger at 350°C and exits at 155°C. The heat extracted is used to boil 0.283 kg/s of 100°C water (from saturated liquid to saturated steam). The heat exchanger is a single-shell shell-and-tube heat exchanger with two tube passes. The overall heat transfer coefficient for the hot side is 240 W/(m²°C). Assume a constant specific heat for air of Cp = 1.005 kJ/(kg °C). The pressure of the hot air and the boiling water is...

  • Steam Generator air (inlet) - 320°C P. = 100 kPa th =0.5 kg/s heat exchanger -...

    Steam Generator air (inlet) - 320°C P. = 100 kPa th =0.5 kg/s heat exchanger - water (inlet) T = 20°C Pw = 100 kPa m = 0.025 kg/s Problem sketch Solve with EES. Document all necessary balances The problem sketch illustrates a heat exchanger in which hot air is used to generate steam. Air enters the heat exchanger at 1a, in = 320C, Pa = 100 kPa, and ma -0.5 kg/s. Model air as an ideal gas with constant...

  • A single shell pass, two tube pass heat exchanger is used to heat water entering at...

    A single shell pass, two tube pass heat exchanger is used to heat water entering at Tc, in=15°C and mass flow rate 2 kg/s with ethylene glycol entering at Th, in= 85°C with a mass flow rate of 1kg/s. Calculate the rate of heat transfer Q and the outlet temperatures of the water and ethylene glycol if the heat transfer area is 10m2. (10 marks) Data: Specific Heat Capacity of ethylene glycol = 2600J/kg.°C Specific Heat Capacity of water =...

  • Heat transfer 1) 2.5 m/s of air at 150°C is used to heat (0.25 + /250)=0.254...

    Heat transfer 1) 2.5 m/s of air at 150°C is used to heat (0.25 + /250)=0.254 kg/s of 20°C water. The heat exchanger is a finned-tube cross flow heat exchanger with both sides unmixed. The overall heat transfer coefficient associated with the hot side is 120 W/(m2 °C). The hot-side area is 20 m². Assume a constant specific heat for air and water of Cecair = 1.005 kJ/(kg °C), Crewater = 4.2 kJ/(kg). The pressure of the hot air is...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT