Question

Three identical isolated capacitors, each with capacitance C, are connected in parallel, with a 11.3 V potential difference across their plates. Each capacitor carries a charge of 4.60 uC. (a) Find C (b) Find the equivalent capacitance. (c) Suppose that one of the capacitors is first disconnected and then reconnected with its terminals reversed. Find the final voltage drop across the capacitors

0 0
Add a comment Improve this question Transcribed image text
Answer #1

a)

V = potential difference across each capacitor = 11.3 Volts

Q = charge stored = 4.60 x 10-6 C

Capacitance is given as

C = Q/V = (4.60 x 10-6)/11.3 = 0.41 x 10-6 F

b)

equivalent capacitance is given as

Ceq = C1 + C2 + C3 = C + C + C = 3 C = 3 (0.41 x 10-6) = 1.23 x 10-6

c)

The Voltage drop remains same

Add a comment
Know the answer?
Add Answer to:
Three identical isolated capacitors, each with capacitance C, are connected in parallel, with a 11.3 V...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two identical parallel-plate capacitors, each with capacitance 13.0 μF, are charged to potential difference 47.5 V...

    Two identical parallel-plate capacitors, each with capacitance 13.0 μF, are charged to potential difference 47.5 V and then disconnected from the battery. They are then connected to each other in parallel with plates of like sign connected. Finally, the plate separation in one of the capacitors is doubled. (a) Find the total energy of the system of two capacitors before the plate separation is doubled. J (b) Find the potential difference across each capacitor after the plate separation is doubled....

  • Two capacitors, one that has a capacitance of 4 µF and one that has a capacitance...

    Two capacitors, one that has a capacitance of 4 µF and one that has a capacitance of 12 µF are first discharged and then are connected in series. The series combination is then connected across the terminals of a 14-V battery. Next, they are carefully disconnected so that they are not discharged and they are then reconnected to each other--positive plate to positive plate and negative plate to negative plate. (a) Find the potential difference across each capacitor after they...

  • Three capacitors having capacitances of 9.0 μF, 8.7 μF. and 5.0 μF are connected in series across a 32- V potential difference.

    Three capacitors having capacitances of 9.0 μF, 8.7 μF. and 5.0 μF are connected in series across a 32- V potential difference.Part A What is the charge on the 5.0 μF capacitor? Part B What is the total energy stored in all three capacitors? Part C The capacitors are disconnected from the potential difference without allowing them to discharge. They are then reconnected in parallel with each other, with the positively charged plates connected together. What is the voltage across each capacitor in the parallel...

  • 5. A parallel combination of two identical 2.0 uF parallel plate capacitors is connected to a...

    5. A parallel combination of two identical 2.0 uF parallel plate capacitors is connected to a 100-V battery. The battery is then removed and the separation between the plates of one of the capacitors is doubled. Find the charge on each capacitor 6. For the circuit shown below, Find: (a) The equivalent capacitance (b) The charge on each capacitor (c) The voltage across each capacitor (d) The total energy stored 0.3 F 10.0V 1.0 uF 0.25 uf

  • Three capacitors having capacitances of 8.3 μF, 8.9 μF and 4.9 μF are connected in series across a 36 V potential difference.

    Three capacitors having capacitances of 8.3 μF, 8.9 μF and 4.9 μF are connected in series across a 36 V potential difference. Part A What is the charge on the 4.9 μF capacitor? Part B What is the total energy stored in all three capacitors?Part C The capacitors are disconnected from the potential difference without allowing them to discharge. They are the reconnected in parallel with each other, with the positively charged plates connected together. What is the voltage across each capacitor...

  • A potential difference V = 4.200×102V is applied to two capacitors connected in series. One capacitor,...

    A potential difference V = 4.200×102V is applied to two capacitors connected in series. One capacitor, C1, is 4.60 ?F and the other, C2, is 7.50 ?F. The charged capacitors are disconnected carefully from each other and from the battery. They are then reconnected, positive plate to positive plate and negative plate to negative plate, with no external voltage being applied. What is the charge on the positive plate of C1? What is the potential difference across C1? What is...

  • Problem 24.61 (C) 6orta Three capacitors having capacitances of 85F 81 and 45 F are connected...

    Problem 24.61 (C) 6orta Three capacitors having capacitances of 85F 81 and 45 F are connected in series across a 31-V potential difference Constants The capacitors are disconnected from the potential difference without allowing them to discharge. They are then reconnected in parallel with each other, with the positively charged plates connected together. What is the voltage across each capacitor in the parallel combination? Express your answer using two significant figures. Pal AΣΦ c 2 221 X10 VE V Submit...

  • Three capacitors having capacitances of 8.0 µF, 8.6 µF, and 4.1 µF are connected in series...

    Three capacitors having capacitances of 8.0 µF, 8.6 µF, and 4.1 µF are connected in series across a 36-V potential difference. (A) What is the charge on the 4.1μF capacitor? ( Express your answer using two significant figures ) i tried to find it and my answers was : ( 7.5*10^2 ) , ( 745 ) , ( 17 ) , ( 74 ) , ( 74.2 ) all are wrong :( (B) What is the total energy stored in...

  • When two or more capacitors are connected in parallel to a battery,

    When two or more capacitors are connected in parallel to a battery,a) the equivalent capacitance of the combination is less than the capacitance of any one of the capacitors.b) each capacitor carries the same amount of charge.c) the voltage across each capacitor is the same.d) all of the given answerse) none of the given answers

  • Two parallel plates, each having area A 3676cm are connected to the terminals of a battery of voltage V, 6 V A as shown...

    Two parallel plates, each having area A 3676cm are connected to the terminals of a battery of voltage V, 6 V A as shown. The plates are separated by a distance d 0.42cm. You may assume (contrary to the drawing) that the separation between the plates is small compared to a linear dimension of the plate + A 1) What is C, the capacitance of this parallel plate capacitor? 7.746E-4 uF Submit 2) What is Q, the charge stored on...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT