Question

4. The following structure is made of AISI 1006 cold-drawn steel (Sy=280MPa) and it is loaded by the forces F=0.55 kN, P=8.0

1 0
Add a comment Improve this question Transcribed image text
Answer #1

Given data: AISI 1006 CD steel, Force (F)=0.55kN=0.55x10 N. Force (P) = 8.0 kN = 8.0x10’N. Torque (T) = 30.0 N.m = 30x10²N.mThus, stress 0 = 0; +oa = 70.03+25.46 = 95.49 N/mm? Calculate the shear stress, twº 16T 16(30x103) (20) Tv = 19.09 N/mm² CalcApply the Tresca criterion, to calculate the FOS at point A. S, 0-02 SM - 2x(FOS). *2*2(FOS). 99.165-(-3.675)= (FOS). (FOS),Calculate the principal stress at point B. Oxuyt 2 + 01.2= - T . 2 25.46+0 4. 25.46–0)+(21.432)? 012 = 12.73 +24.93 0 =12.73

Add a comment
Know the answer?
Add Answer to:
4. The following structure is made of AISI 1006 cold-drawn steel (Sy=280MPa) and it is loaded...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Machine Elements Design

    This problem illustrates that the factor of safety for machine element depends on the particular point selected for analysis. Here you are to compute factor of safety, based upon the distortion energy theory, for stress elements at A and B pf the member shown in the figure. This bar is made of AISI 1006 cold drawn steel and is loaded by the forces F=0.55 kN, P=4.0 kN, and T= 25 N.m.

  • 5-36 This problem illustrates that the factor of safety for a machine element depends on the...

    5-36 This problem illustrates that the factor of safety for a machine element depends on the particular point selected for analysis. Here you are to compute factors of safety, based upon the distortion- energy theory, for stress elements at A and B of the member shown in the figure. This bar is made of AISI 1006 cold-drawn steel and is loaded by the forces F = 0.55 kN, P = 4.0 kN, and T = 25 N·m. -100 mm- Problem...

  • 4. This problem illustrate that the factor of safety for a machine element depends on the...

    4. This problem illustrate that the factor of safety for a machine element depends on the particular point selected for analysis. Compute factors of safety, based upon the distortion energy theory, for stress elements A and B of the member shown in the figure. This bar is made of AISI 1015 Cold-Drawn Steel and is loaded by the forces F = 6000 N, P = 5000 N, and T = 20 Nm. (5 points) 15-mm

  • This problem illustrates that the factor of safety for a machine element depends on the particular...

    This problem illustrates that the factor of safety for a machine element depends on the particular point selected for analysis. Here you are to compute factors of safety, based upon the distortion-energy theory, for stress elements at A and B of the member shown in the figure. This bar is made of AISI 1006 cold-drawn steel and is loaded by the forces F=0.55kN, P=4kN, and T=25N·m. Given: Sy=280MPa.NOTE: This is a multi-part question. Once an answer is submitted, you will...

  • The cold-drawn AISI 1040 steel bar shown in the figure is subjected to a completely reversed...

    The cold-drawn AISI 1040 steel bar shown in the figure is subjected to a completely reversed axial load fluctuating between 28 kN in compression to 28 kN in tension. Estimate the fatigue factor of safety based on achieving infinite life and the yielding factor of safety. If infinite life is not predicted, estimate the number of cycles to failure. 6-mm. 25 mm + 10 mm What is the factor of safety against yielding? The factor of safety against yielding is...

  • This problem illustrates that the factor of safety for a machine element depends on the particular...

    This problem illustrates that the factor of safety for a machine element depends on the particular point selected for analysis. Here you are to compute factors of safety, based upon the distortion-energy theory, for stress elements at A and B of the member shown in the figure. This bar is made of AISI 1006 cold-drawn steel and is subjected to the loads F=0.55kN, P=6kN, and T=34N·m. Round your answers to two decimal places.Factor of safety for stress element at A=...

  • Required information The cold-drawn AISI 1040 steel bar shown in the figure is subjected to a...

    Required information The cold-drawn AISI 1040 steel bar shown in the figure is subjected to a completely reversed axial load fluctuating between 16 KN in compression to 16 kN in tension. Estimate the fatigue factor of safety based on achieving infinite life and the yielding factor of safety. If infinite life is not predicted, estimate the number of cycles to failure. 6-D S 10 What is the factor of safety against fatigue? The factor of safety against fatigue is

  • Required information The cold-drawn AISI 1040 steel bar shown in the figure is subjected to a...

    Required information The cold-drawn AISI 1040 steel bar shown in the figure is subjected to a completely reversed axial load fluctuating between 16 KN in compression to 16 kN in tension Estimate the fatigue factor of safety based on achieving infinite life and the yielding factor of safety. If infinite life is not predicted, estimate the number of cycles to failure. 6-D 25 man 10 What is the number of cycles to failure for this part? The value of the...

  • Required information The cold-drawn AISI 1040 steel bar shown in the figure is subjected to a...

    Required information The cold-drawn AISI 1040 steel bar shown in the figure is subjected to a completely reversed axial load fluctuating between 16 kN in compression to 16 kN in tension Estimate the fatigue factor of safety based on achieving infinite life and the yielding factor of safety. If infinite life is not predicted, estimate the number of cycles to failure. 6-D 25 man 10m What is the number of cycles to failure for this part? The value of the...

  • 5 Part 2 of 3 Required information The cold-drawn AISI 1040 steel bar shown in the...

    5 Part 2 of 3 Required information The cold-drawn AISI 1040 steel bar shown in the figure is subjected to a completely reversed axial load fluctuating between 16 kN in compression to 16 kN in tension Estimate the fatigue factor of safety based on achieving infinite life and the yielding factor of safety. If infinite life is not predicted, estimate the number of cycles to failure 0:58:22 Files 10 What is the factor of safety against fatigue? The factor of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT